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1.6 Hölder’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Linear Algebra overview 7
2.1 Vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Inner product spaces . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Cauchy-Schwarz Inequality . . . . . . . . . . . . . . . . . . . . . 8

3 Sequences 9
3.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Subsequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Cauchy sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Important sequence limits . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Recurrence relations . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Series 12
4.1 Geometric series . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Telescoping series . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Convergence tests . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Infinite products . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Limits of functions 15
5.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Landau Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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1 Inequalities

Some useful inequalities which will be generally helpful:

1.1 Triangle inequality

|x+ y| ≤ |x|+ |y|.

1.2 Reverse triangle inequality∣∣∣|x| − |y|∣∣∣ ≤ |x− y|
1.3 Cauchy-Schwartz inequality

|〈x, y〉| ≤ ‖x‖‖y‖.

Important special cases for different norms (both sides squared for brevity):

• Euclidean space: ∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣
2

≤
n∑
i=1

x2
i

n∑
i=1

y2
i

• Functions f, g : [a, b]→ R:∣∣∣∣∫ b

a
f(x)g(x) dx

∣∣∣∣2 ≤ ∫ b

a
|f(x)|2 dx

∫ b

a
|g(x)|2 dx

1.4 Arithmetic Mean-Geometric Mean

If xi > 0,
x1 + · · ·+ xn

n
≥ n
√
x1 . . . xn

1.5 Jensen’s inequality

A function ϕ : R→ R is said to be convex if for all x1, x2 ∈ R and t ∈ [0, 1],

ϕ(tx1 + (1− t)x2) ≤ tϕ(x1) + (1− t)ϕ(x2).

If ϕ is convex, then Jensen’s inequality states that

ϕ

(∫
f(x) dx

)
≤
∫
ϕ(f(x)) dx

If
n∑
i=1

pi = 1,

ϕ

(
n∑
i=1

pixi

)
≤

n∑
i=1

piϕ(xi)
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1.6 Hölder’s inequality

Let p, q > 1 such that 1/p+ 1/q = 1. Then

n∑
i=1

f(xi)g(xi) ≤

(
n∑
i=1

|f(xi)|p
)1/p( n∑

i=1

|g(xi)|q
)1/q

Also, ∫ b

a
f(x)g(x) dx ≤

(∫ b

a
|f(x)|p

)1/p(∫ b

a
|g(x)|q

)1/q

This reduces to the Cauchy-Schwartz inequality when p = q = 2.
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2 Linear Algebra overview

2.1 Vector spaces

Basically, a vector space is a set V closed under (finite) vector addition and
scalar multiplication. The standard example is Rn, the set of all n-tuples of real
numbers.

Definition 2.1 (Vector space). A vector space V over a field F is a set equipped
with the operations of addition and scalar multiplication such that for each
x, y ∈ V and a ∈ F there are unique elements x + y, ax ∈ V such that the
following statements hold:

1. (Commutativity) For all x, y ∈ V , x+ y = y + x.

2. (Associativity) For all x, y, z ∈ V , x+ (y + z) = (x+ y) + z.

3. (Additive identity) There exists an element 0 ∈ V such that x+ 0 = x for
all x ∈ V .

4. (Additive inverse) For all x ∈ V , there exists −x ∈ V such that x+(−x) =
0.

5. (Scalar identity) For all x ∈ V , 1x = x.

6. (Associativity of scalars) For all a, b ∈ F and x ∈ V , a(bx) = (ab)x.

7. (Distributivity) For all a ∈ F and x, y ∈ V , a(x+ y) = ax+ ay.

8. (Distributivity) For all a, b ∈ F and x ∈ V , (a+ b)x = ax+ bx.

Important examples:

1. Rn.

2. Let S be a set and F be a field. Denote F(S,F) = {f |f : S → F}. Then
F(S,F) is a vector space.

2.2 Inner product spaces

Definition 2.2. An inner product on a vector space V over a field F is a function
〈·, ·〉 : V × V → F such that the following conditions hold for every u, v, w ∈ V
and α ∈ F:

1. (Linearity) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

2. (Linearity) 〈αu, v〉 = α〈u, v〉

3. (Symmetry) 〈u, v〉 = 〈v, u〉

4. (Positive definiteness) 〈u, u〉 > 0 if u 6= 0, and 〈0, 0〉 = 0.

An inner product space is a vector space endowed with an inner product.
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Important examples:

1. For x, y ∈ Rn, the dot product is an inner product. Let x = (x1, . . . , xn)
and y = (y1, . . . , yn). The dot product is given by

x · y = x1y1 + · · ·+ xnyn.

The inner product space of Rn, equipped with the dot product, is known
as Euclidean space.

2. For the vector space {f : [a, b]→ R}, define

〈f, g〉 =

∫ b

a
f(x)g(x) dx.

One reason inner products are useful is that they automatically induce met-
rics, given by the norm:

|x| =
√
〈x, x〉.

2.3 Cauchy-Schwarz Inequality

Theorem 1 (Cauchy-Schwarz Inequality). For any inner product and vectors
u, v ∈ V , we have that

|〈u, v〉| ≤ ‖u‖‖v‖

Special cases (note that we have squared both sides to obtain cleaner inequal-
ities):

1. For the Euclidean space Rn,∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣
2

≤

∣∣∣∣∣
n∑
i=1

x2
i

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

y2
i

∣∣∣∣∣
2. For the space of functions {f : [a, b]→ R},∣∣∣∣∫ b

a
f(x)g(x) dx

∣∣∣∣2 ≤ ∫ b

a
|f(x)|2 dx

∫ b

a
|g(x)|2 dx

The Cauchy-Schwarz inequality also implies the triangle inequality :

‖x+ y‖ ≤ ‖x‖+ ‖y‖.
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3 Sequences

Definition 3.1 (Sequence convergence). A sequence {an}∞n=1 converges to a
limit L if for every ε > 0 there exists an N ∈ N such that for all n ≥ N ,
d(an, L) < ε. We write this as an → L, or lim

n→∞
an = L.

3.1 Properties

1. an + bn → a+ b.

2. kan → ka.

3. anbn → ab.

4. Assuming bn 6= 0 for all n and b 6= 0, an
bn
→ a

b .

5. If an ≤ bn for all n ∈ N then a ≤ b.

6. (Squeeze) If an ≤ bn ≤ cn, and lim
n→∞

an = lim
n→∞

cn = L then lim
n→∞

bn = L.

7. (Monotone Convergence Theorem) Any monotonic and bounded sequence
is convergent.

8. Let f : X → Y be a continuous function between two metric spaces. Then
f(an)→ f(a).

3.2 Subsequences

Definition 3.2 (Subsequence). A subsequence {ank}∞k=1 of a sequence {an}∞n=1

is obtained by selecting a countable subset {nk} ⊆ N such that n1 < n2 < . . . .

Proposition 1. A sequence {an}∞n=1 converges to a limit L if and only if every
subsequence ank → L.

It is useful to study the limiting extreme behavior of sequences. The limit
superior and limit inferior are used to describe the limiting maximal and minimal
behavior of sequences.

Definition 3.3 (Limit superior). A subsequential limit of a sequence {an}∞n=1 is
a number L such that ank → L for some subsequence {ank}∞k=1 ⊆ {an}∞n=1. The
limit superior of {an}∞n=1, lim sup

n→∞
an, is the supremum of the set of subsequential

limits of {an}∞n=1. Similarly the limit inferior (lim inf
n→∞

an) is the infimum of the

set of subsequential limits.

If lim sup
n→∞

an = M , then for any ε > 0, there exists N ∈ N such that for every

n ≥ N , an < M + ε. So any number larger than the limit superior is eventually
an upper bound for the sequence. Although infinitely many terms may lie above
the limit superior, only finitely many terms may lie above any number higher
than the limit superior. Similarly, if lim inf

n→∞
an = L, then for any ε > 0, there
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Figure 1. Illustration of the limit superior and limit inferior.

exists N ∈ N such that for every n ≥ N , an > L − ε. Figure 1 illustrates the
limit superior and limit inferior for an example sequence.

Properties of the limit extrema:

(a) lim sup
n→∞

an = lim
n→∞

(
sup
m≥n

am

)
. Similar result for limit inferior.

(b) lim sup
n→∞

an = inf
n≥0

(
sup
m≥n

am

)
. Similar result for limit inferior.

(c) inf
n∈N

an ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ sup
n∈N

an.

(d) lim
n→∞

an = L if and only if lim inf
n→∞

an = lim sup
n→∞

an = L.

(e) lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

(f) If an, bn ≥ 0, lim sup
n→∞

(anbn) ≤
(

lim sup
n→∞

an

)(
lim sup
n→∞

bn

)
.

Theorem 2 (Bolzano-Weierstrass). If {an}∞n=1 is a sequence in a compact set
K, then there is some subsequence {ank}∞k=1 of {an}∞n=1 which converges in K.

3.3 Cauchy sequences

Definition 3.4 (Cauchy sequence). A sequence {an}∞n=1 is Cauchy if for every
ε > 0 there exists an n ∈ N such that d(am, an) > ε for any m,n > N .

Properties:

• Every convergent sequence is Cauchy.

• If X is a compact metric space and and {an}∞n=1 ⊆ X then an converges
in X.
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3.4 Important sequence limits

(a) 1
np → 0 if p > 0.

(b) n
√
p→ 1 for p > 0.

(c) n
√
n→ 1.

(d) nα

en → 0 for α ∈ R.

(e) logn
nα → 0 for α ∈ R.

(f) xn → 0 if |x| < 1.

(g)
(
1 + x

n!

)n → ex for any x ∈ R.

3.5 Recurrence relations

A three-term recurrence relation inductively defines a sequence. It has the form
an = c1an−1 + c2an−2 for some constants c1 and c2. To develop a general
formula for the sequence, we use some techniques from linear algebra. Note that
an = c1an−1 + c2an−2 if and only if[

an
an−1

]
=

[
c1 c2

1 0

] [
an−1

an−2

]
Writing xn = [an an−1]T , we have the closed form

xn = Anx0.

Some basic linear algebra allows us to determine that xn = k1λ
n
1 +k2λ

n
2 where

k1 and k2 are constants determined by the initial conditions and λ1 and λ2 are
eigenvalues of A. The characteristic polynomial of A is p(λ) = λ2−c1λ−c2 = 0.
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4 Series

Definition 4.1 (Series). A series is the limit of a sequence of partial sums.
Given a sequence {an}∞n=1, we use the notation

∞∑
n=1

an = lim
n→∞

(a1 + · · ·+ an) .

4.1 Geometric series

One of the most important series is the geometric series: For |r| < 1, we have
that

∞∑
n=0

rn =
1

1− r
.

Figure 2. Illustration of geometric series.

4.2 Telescoping series

A telescoping series is one where successive terms in the series partially cancel
each other out. Suppose an → 0. Then

∞∑
n=0

(an+1 − an) = −a0

4.3 Convergence tests

Divergence test If an 9 0, then
∑

n an diverges.

p-test . The series
∞∑
n=1

1

np

converges for p > 1 and diverges for p ≤ 1. The series
∑

n 1/n is called the
harmonic series.
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log-test The series
∞∑
n=1

1

n(log n)p

converges for p > 1 and diverges for p ≤ 1.

Comparison test Suppose 0 ≤ an ≤ bn. If
∑

n bn converges, then
∑

n an
converges. If

∑
n an diverges,

∑
n bn diverges.

Limit comparison test Let an and bn be sequences with limn→∞

∣∣∣anbn ∣∣∣ ∈
(0,∞). Then

∑
n an converges if and only if

∑
n bn converges. (This also means

that
∑

n an diverges if and only if
∑

n bn diverges.)

Ratio test The series
∑

n an

(a) converges if lim sup
n→∞

∣∣∣an+1

an

∣∣∣ < 1,

(b) diverges if there exists N ∈ N such that
∣∣∣an+1

an

∣∣∣ ≥ 1 for all n ≥ N .

Root test Let α = lim sup
n→∞

n
√
|an|.

(a) If lim sup
n→∞

n
√
|an| < 1, then

∑
n an converges.

(b) If lim sup
n→∞

n
√
|an| > 1, then

∑
n an diverges.

The root test is “stronger” than the ratio test: that is, the root test shows con-
vergence whenever the ratio test does, and whenever the root test is inconclusive,
so is the ratio test.

Alternating series Suppose

(a) |a1| ≥ |a2| ≥ . . . ,

(b) a2k−1 ≥ 0 and a2k ≤ 0 for k ∈ N,

(c) an → 0.

Then
∑

n an converges.

Integral test If f : R → R is monotone, then
∑∞

n=1 f(n) converges if and
only if

∫∞
1 f(x) dx converges.

Dirichlet test If
∑N

n=1 an is bounded for every N ∈ N and bn monotonically
decreases to 0, then

∑
n anbn converges.
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Cauchy condensation test Let f : R → R be a monotonically decreasing
sequence. Then

∞∑
n=1

f(n) converges if and only if
∞∑
n=1

2nf(2n) converges.

4.4 Infinite products

If an > 0 for all n ∈ N, then the product

∞∏
n=1

an converges if and only if
∞∑
n=1

log an converges.

Furthermore, suppose pn → 0. Since

lim
n→∞

log(1 + pn)

pn
= lim

x→0

log(1 + x)

x
= 1,

by the limit comparison test, the product

∞∏
n=1

(1 + pn) converges if and only if
∞∑
n=1

log pn converges.
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5 Limits of functions

Definition

Definition 5.1 (Limit of a function). Suppose f : E ⊆ X → Y for metric spaces
X and Y . Let a be a limit point of E. A point L ∈ Y is called the limit of f at
a if for every ε > 0 there exists δ > 0 such that whenever 0 < dX(x, a) < δ, we
have that

dY (f(x), L) < ε.

(The metrics of X and Y are notated by dX and dY , respectively.) In this case,
we write that f(x)→ L as x→ a, or

lim
x→a

f(x) = L.

We can also recast the definition of limits of functions in terms of sequences:

lim
x→a

f(x) = L if and only if lim
n→∞

f(an) = L

for every sequence {an}∞n=1 ⊆ E converging to a with an 6= a for any n ∈ N.
For limits of functions at a point in an ordered field X, it is also useful to

define one-sided limits:

Definition 5.2 (One-sided limit). Let f : X → Y . We write

lim
x→a+

f(x) = L

if for any sequence an → a with an > a, f(an) converges to L. The value
L is called the limit from above of f at a. The following are also common
notations/descriptions for the limit from above:

• f(a+)

• lim
x↓a

f(x)

• f(x)→ L as x ↓ a.

The limit from below is defined similarly.

5.1 Properties

Suppose E ⊆ X, a is a limit point of E, and f and g are functions from E to
C. Then

(a) lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x);

(b) lim
x→a

(fg)(x) =
(

lim
x→a

f(x)
)(

lim
x→a

g(x)
)

;

(c) If f is a continuous function, lim
x→a

f(g(x)) = f
(

lim
x→a

g(x)
)

.

(d) lim
x→a

(
f
g

)
(x) =

lim
x→a

f(x)

lim
x→a

g(x) .

In Rk, limits commute with addition and dot products as well.
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5.2 Landau Notation

Definition 5.3 (Big-O). Let f and g be functions from R to R with g > 0. We
write f(x) = O(g(x)) as x→∞ if there exists M > 0 and x0 such that

|f(x)| ≤Mg(x)

for all x > x0.

This provides an upper bound on the growth rate of a function. Common
choices for g(x) include log x, xn for some n ∈ N, and ex. It can also be used to
describe error terms; for example:

ex = 1 + x+
x2

2
+ · · · = 1 + x+O(x2) as x→ 0.

Definition 5.4 (Little-o). Let f and g be functions from R to R with g > 0.
We write f(x) = o(g(x)) as x→∞ if

lim
x→∞

f(x)

g(x)
= 0.

So if f(x) = o(g(x)) then g grows faster than f . Thus big-O is an inclusive
upper bound on the growth rate, while little-o is a strict upper bound.

5.3 L’Hôpital’s rule

L’Hôpital’s rule provides a useful way of evaluating limits of indeterminate forms.

Theorem 3 (L’Hôpital’s rule). Suppose lim
x→a

f(x) = lim
x→a

g(x) = 0, or
∣∣∣ lim
x→a

f(x)
∣∣∣ =∣∣∣ lim

x→a
g(x)

∣∣∣ = ∞. If f and g are differentiable on some punctured open interval

I \ {a}, and lim
x→a

f ′(x)
g′(x) exists, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

L’Hôpital’s rule works on one-sided limits. It can also tolerate some indeter-
minate forms of the form 00, ∞0, 1∞, ∞∞, 0 · ∞, and ∞−∞ as well:

• Terms like 00,∞0, 1∞, and∞∞ are usually handled by using the properties
of the exponential function and the fact that limit operations commute
with the exponential function due to continuity.

• Terms like 0 · ∞ are handled by basically writing 0 = 1/(1/0) to get an
indeterminate form like ∞/∞ or by writing ∞ = 1/(1/∞) to get a form
like 0/0.

• Indeterminate forms of type ∞−∞ can sometimes be resolved by writing
as one common fraction.
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As an example, to find the limit of xx as x→ 0+, we do the following:

lim
x→0+

xx = lim
x→0+

exp (log xx)

= lim
x→0+

exp (x log x)

= exp

(
lim
x→0+

x log x

)
= exp

(
lim
x→0+

log x

1/x

)
= exp

(
lim
x→0+

1/x

−1/x2

)
= e0 = 1.

5.4 Important examples

1. lim
x→0

ex−1
x = 1

2. lim
x→0

log(1+x)
x = 1

3. lim
x→0

(1 + x)1/x = e

4. lim
x→0

sinx
x = 1

5. lim
x→0

(1+x)α

1+αx = 1, for α ∈ R
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6 Continuity

Definition 6.1 (Continuity). Let f : E ⊆ X → Y , and let a ∈ E. Then f is
said to be continuous at a if for every ε > 0 there exists a δ > 0 such that for all
points x ∈ E with dX(x, a) < δ, we have that dY (f(x), f(a)) < δ. The function
f is said to be continuous on E if it is continuous at every point of E.

Note that if a is an isolated point of E, then f is automatically continuous
at a, so this is in some sense a sort of stupid definition. However, the normal
intuitive condition holds if a is an accumulation point:

Proposition 2. If a is an accumulation point of E, then f is continuous at a
if and only if

lim
x→a

f(x) = f(a).

Another related concept to continuity is that of uniform continuity:

Definition 6.2 (Uniform continuity). A function f : E ⊆ X → Y is said to be
uniformly continuous if for every ε > 0 there exists a δ > 0 such that for any
x1, x2 ∈ E with dX(x1, x2) < δ, we have that dY (f(x1), f(x2)) < ε.

Uniform continuity is a stronger condition than pointwise continuity. For
instance, the function f(x) = 1/x is pointwise continuous on (0,∞) but not
uniformly continuous, as your δ needs to be smaller for values closer to 0 for the
same ε.

There is also a nice topological definition of continuity:

Theorem 4 (Equivalent topological definition of continuity). A map f : X → Y
is continuous on X if and only if f−1(U) is open for every open set U ⊆ Y .

6.1 Properties

1. Compositions of continuous functions are continuous. (Proof is easy using
topological definition of continuity.)

2. Inverses of continuous functions are continuous.

3. Continuous functions are closed under normal arithmetic operations (scalar
multiplication, +, ·, ∇·).

4. If f : X → Y is continuous and X is compact, then f(X) is compact.
Furthermore, f is uniformly continuous on the compact set X.

5. Continuous functions attain their extrema on compact domains.

6. If f and g are continuous then lim
x→a

f(g(x)) = f
(

lim
x→a

g(x)
)

.

7. Intermediate value theorem (see below).
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6.2 Intermediate Value Theorem

Theorem 5 (Intermediate Value Theorem). Suppose f : [a, b] ⊆ R → R is
continuous with f(a) < f(b). If c ∈ R such that f(a) < c < f(b), then there is
some x ∈ (a, b) such that f(x) = c.

Important corollaries:

1. If f : [a, b] ⊆ R → R is continuous with f(a) < 0 < f(b), then f contains
a root in (a, b).

2. Images of intervals under continuous functions are also intervals.

6.3 Lipschitz continuity

Lipschitz continuity is a stronger condition than uniform continuity.

Definition 6.3 (Lipschitz continuity). A function f : X → Y is Lipschitz
continuous if there exists K > 0 such that for every x1, x2 ∈ X,

dY (f(x1), f(x2)) ≤ KdX(x1, x2)

For functions f : R→ R, this condition becomes

|f(x1)− f(x2)| ≤ K|x1 − x2|.

Equivalently, such a function is Lipschitz continuous if for every x1 6= x2,

|f(x1)− f(x2)|
|x1 − x2|

≤ K

for some constant K > 0. Thus a Lipschitz condition places an upper bound on
the slope of secant lines of f .

Figure 3. Upper bound on secant lines of f , as determined by the Lipschitz
constant.
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i Properties

1. Lipschitz functions are uniformly continuous.

2. Suppose f : R→ R is differentiable on R. Then f is Lipschitz if and only
if f has a bounded first derivative. In this case the Lipschitz constant is
K = sup f ′(x).

6.4 Hölder continuity

Definition 6.4 (Hölder continuity). A function f : E ⊆ Rk → R is said to be
Hölder continuous or α-Hölder continuous if there are constants K > 0, α > 0
such that for all x1, x2 ∈ E,

|f(x1)− f(x2)| ≤ K‖x1 − x2‖α.

If f is Hölder continuous with exponent α = 1, then f is Lipschitz continuous.
Furthermore, if 0 < α ≤ 1, we have the following chain of implications:

continuously differentiable

⇒ Lipschitz continuous

⇒ α-Hölder continuous

⇒ uniformly continuous

⇒ continuous.
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7 Differentiation

Definition 7.1 (derivative). Let f : [a, b]→ R. For x ∈ [a, b], define

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

if the limit exists. In this case, we say that f is differentiable at x. The limit
f ′(x) is called the derivative of f at x. If f ′(x) is defined for every x ∈ E for
some set E ⊆ [a, b], we say that f is differentiable on E. Note that this defines
a function f ′ : E → R.

By repeated iteration, we can continue obtaining derivatives of higher order.
f (k) represents the function obtained by taking the derivative of f k times.

If f , f ′, . . . , f (k) exist on a domain D and are continuous, we write that
f ∈ C k(D) and say that f is C k on D. If D = R then we simply write f ∈ C k.
Finally, we write that f ∈ C instead of f ∈ C 0 to indicate that a function is
continuous.

7.1 Properties

1. (f + g)′(x) = f ′(x) + g′(x)

2. (cf)′(x) = c · f ′(x)

3. (fg)′(x) = f ′(x)g(x) + g′(x)f(x)

4.
(
f
g

)′
(x) = g(x)f ′(x)−f(x)g′(x)

g(x)2

5. (Chain rule) (f ◦ g)′(x) = f ′ (g(x)) g′(x)

7.2 Mean Value Theorems

Theorem 6 (Mean Value Theorem). Let f : [a, b] → R be a differentiable
function. Then there exists some c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Geometrically, this says that any differentiable function has a point on its
domain such that the tangent line at that point is parallel to the secant line on
the domain. See Fig. 4.

By integrating both sides and applying the fundamental theorem of calculus,
the Mean Value Theorem for integrals can be obtained: For any differentiable
function f : [a, b]→ R, there exists some c ∈ (a, b) such that

f(c) =
1

b− a

∫ b

a
f(x) dx.

This also has a geometric interpretation, as shown in Fig. 5. The term on the
right side of the equality is the average value of the function on the interval
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Figure 4. Illustration of the mean value theorem.

Figure 5. Mean value theorem for integrals

[a, b]. To see this, note that by multiplying both sides by b− a, we get that the
area under the curve f is equal to f(c)(b − a), so that this has equal area as
a rectangle of width b − a and height f(c). Thus the Mean Value Theorem for
Integrals says that the average value of the function is attained by some point
c ∈ (a, b).

7.3 Taylor’s Theorem

Taylor’s theorem is a generalization of the Mean Value Theorem. Note that
we can rewrite the mean value theorem as follows: If f is differentiable on the
interval (a, x), then there exists some ξ ∈ (a, x) such that

f(x) = f(a) + f ′(ξ)(x− a).

Taylor’s theorem generalizes this to higher orders to obtain better estimates
for f(x).

Theorem 7 (Taylor’s Theorem). Let f : R → R be k + 1-times differentiable
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for some k ∈ N. Then

f(x) = f(a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2+· · ·+f (k)(a)

k!
(x−a)k+

f (k+1)(ξ)

(k + 1)!
(x−a)k+1

where ξ is some number between x and a.
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Figure 6. Riemann sum of a function.

8 Integration

8.1 Riemann integral

The Riemann integral was developed to study the “area problem” in calculus;
that is, to understand the area under the graph of a function f : [a, b]→ R. Fig. 6
illustrates the approach. The interval [a, b] is partitioned into subintervals which
form the bases of rectangles that with the height of the functions. Then the area
is estimated by summing the areas of all of the rectangles. Better estimates of
the area are obtained by refining the partitions.

A partition of an interval [a, b] is a finite sequence of numbers {xi}ni=0 such
that

a = x0 < x1 < · · · < xn = b.

The set [xi, xi+1] is called a sub-interval of the partition. From this partition,
we select a sequence of numbers {ti}n−1

i=0 such that

ti ∈ [xi, xi + 1]

for i = 0, 1, . . . , n − 1. The sequence of xi’s combined with the sequence of ti’s
forms a tagged partition, P . Then, the Riemann sum of f with respect to the
partition P is given by

n−1∑
i=0

f(ti)(xi+1 − xi).

Let ∆xi = xi+1 − xi. For some functions f , no matter which partition is taken,
as max ∆xi → 0 the Riemann sums approach a limiting value. This is called the
Riemann integral :∫ b

a
f(x) dx = lim

max ∆xi→0

n−1∑
i=0

f(ti)(xi+1 − xi).

i Properties of the Riemann integral

We write that f ∈ R if f is Riemann integrable.
Sufficient conditions for Riemann integrability:

1. If f is continuous on [a, b] then f ∈ R on [a, b].

2. If f is monotonic on [a, b] then f ∈ R on [a, b].
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3. If f is bounded on [a, b] and has only finitely many points of discontinuity
then f ∈ R on [a, b].

4. If f ∈ R on [a, b] and ϕ is continuous then ϕ ◦ f ∈ R on [a, b].

5. If f, g ∈ R on [a, b] then fg ∈ R.

Important properties of the Riemann integral:

1. If f, g ∈ R on [a, b], then∫ b

a
f + g dx =

∫ b

a
f dx+

∫ b

a
g dx.

2. If f ∈ R on [a, b] and c ∈ R, then∫ b

a
cf dx = c

∫ b

a
f dx.

3. If f(x) ≤ g(x) on [a, b], then∫ b

a
f dx ≤

∫ b

a
g dx.

4. If f ∈ R on [a, b] then |f | ∈ R on [a, b], and∣∣∣∣∫ b

a
f dx

∣∣∣∣ ≤ ∫ b

a
|f | dx.

5. If f ∈ R on [a, b] and c ∈ [a, b], then∫ c

a
f dx+

∫ b

c
f dx =

∫ b

a
f dx.

ii Evaluating infinite sums using the Riemann integral

We can use Riemann integrals to transform infinite sums into a known definite
integral. For instance, if we have uniform partitions, then we arrive at a sum of
the following form: ∫ 1

0
f(x) dx = lim

n→∞

n∑
i=1

f
(
i
n

)
n

.

Or, more generally:∫ b

a
f(x) dx = lim

n→∞

n∑
i=1

f

(
a+

b− a
n

i

)
b− a
n

.

Brettin 25



8.2 Stieltjes integration

Stieltjes integration generalizes the Riemann integral. Given a bounded function
α : [a, b] → R and a tagged partition P of [a, b], define the Stieltjes sum of f
against α:

n−1∑
i=0

f(ti) (α(xi+1)− α(xi))

If the Stieltjes sums tend to a limit as max ∆xi → 0, then we define the
Stieltjes integral as the limit:∫ b

a
f dα = lim

max ∆xi→0

n−1∑
i=0

f(ti) (α(xi+1)− α(xi))

If f is Stieltjes integrable with respect to α, we write that f ∈ R(α).
Sufficient conditions for Stieltjes integrability are the same as those for Rie-

mann integrability, but we require that f and α are never discontinuous at the
same point in (3). We also have the following properties:

1. If f ∈ R(α) and f ∈ R(β), then∫ b

a
f d(α+ β) =

∫ b

a
f dα+

∫ b

a
f dβ.

2. If f ∈ R(α) and c ∈ R then∫ b

a
f d(cα) = c

∫ b

a
f dα.

Finally, we have an important property linking Stieltjes integration to Rie-
mann integration:

Theorem 8. If f is continuous and α′ ∈ R on [a, b], then∫ b

a
f(x) dα(x) =

∫ b

a
f(x)α′(x) dx.

8.3 The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus explains that differentiation and inte-
gration are essentially inverse operations. It is, you know, sort of fundamental
to calculus.

Theorem 9 (The Fundamental Theorem of Calculus).

1. Suppose f is continuous on an interval I, and a ∈ I. Define the function
F : I → R by

F (x) =

∫ x

a
f(t) dt.

Then F’(x) = f(x) on I.
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2. Suppose f ∈ R on [a, b], and that there is a differentiable function F on
[a, b] with F ′ = f . Then∫ b

a
f(x) dx = F (b)− F (a)

We can concisely write this using Leibniz notation:

1.

f(x) =
d

dx

∫ x

a
f(t) dt.

2. ∫ b

a

d

dx
F (x) dx = F (b)− F (a)

8.4 Leibniz Integral Rule

Theorem 10 (Leibniz integral rule).

d

dt

∫ b(t)

a(t)
f(x, t) dx =

∫ b(t)

a(t)

∂

∂t
f(x, t) dx+

(
f(b(t), t)

∂b

∂t
− f(a(t), t)

∂a

∂t

)
This formula relates the rate of change of an integral to the rate of change

of the function in the interior, accounting for the rate of change of f at the
boundaries. In fluid mechanics, it is known as Reynold’s transport theorem.
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9 Convergence of functions

Definition 9.1 (pointwise convergence). A sequence of functions {fn : E ⊆
X → Y }∞n=1 converges pointwise to a function f : E ⊆ X → Y if for every
x ∈ E, limn→∞ fn(x) = f(x).

Pointwise convergence in itself in general does not play well with other limit
operations. For example, although it would be pretty cute if the following state-
ments were equalities, this is generally not the case:

• lim
n→∞

lim
m→∞

sm,n 6= lim
m→∞

lim
n→∞

sm,n

•
∞∑
n=1

∞∑
m=1

am,n 6=
∞∑
m=1

∞∑
n=1

am,n

• lim
n→∞

lim
x→a

fn(x) 6= lim
x→a

lim
n→∞

fn(x).

•
(

lim
n→∞

fn(x)
)′
6= lim

n→∞
f ′n(x)

• lim
n→∞

∫ b
a fn(x) dx 6=

∫ b
a lim
n→∞

fn(x) dx.

Additionally, a sequence of continuous functions may converge to a discontinuous
limit function. Wack.

9.1 Uniform convergence

Uniform convergence provides a sufficient criterion for the interchanging limits
for many cases.

Definition 9.2 (Uniform convergence). A sequence of functions {fn : E ⊆ X →
Y }∞n=1 converges uniformly on E to a function f if for every ε > 0 there exists
an N ∈ N such that whenever n ≥ N , we have

|fn(x)− f(x)| < ε.

Properties Let {fn(x)} be a uniformly convergent sequence of functions.

• lim
n→∞

lim
x→a

fn(x) = lim
x→a

lim
n→∞

fn(x).

• If {fn(x)} are continuous, then f is continuous as well.

• lim
n→∞

∫ b
a fn(x) dx =

∫ b
a lim
n→∞

fn(x) dx.

• If the sequence of derivative functions {f ′n(x)} converges uniformly, then
f ′n → f ′.
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9.2 Stone-Weierstrass Theorem

The Stone-Weierstrass Theorem is a super nifty result which allows us to ap-
proximate normal functions f through a uniformly convergent sequence of poly-
nomials.

Theorem 11 (Stone-Weierstrass theorem). If f : [a, b]→ R is continuous, then
there exists a sequence of polynomials pn → f uniformly on [a, b].

9.3 Integral convergence theorems

Here are some important theorems that some big 19th and 20th century nerds
spent a lot of time and effort trying to prove, so be thankful for them.

Dominated convergence theorem If fn → f , and there exists a function
g ≥ 0 such that |fn| ≤ g and |f | ≤ g, then

∫
fn →

∫
f if

∫
g <∞.

Monotone convergence theorem If fn ≥ 0, fn ↑ f , then
∫
fn ↑

∫
f .

Uniform convergence theorem If fn → f uniformly, then
∫
fn →

∫
f .

Fatou’s Lemma If fn ≥ 0, then
∫

lim inf fn ≤ lim inf
∫
fn.

9.4 Dirac-delta type integrals

Sometimes we encounter integrals where the integrand goes to zero except for a
few places where it blows up. For simplicity, we might use a change of coordinates
to move the singular point to zero. Then, the trick is to use a change of variables
to scale down the blowup term, putting the bounds in the integral instead. For
example, given ε > 0, we might have

lim
n→∞

∫ ε

−ε

√
n(1− x2)n dx = lim

n→∞

∫ ε
√
n

−ε
√
n

(
1− y2

n

)n
dy

= lim
n→∞

∫ ∞
−∞

(
1− y2

n

)n
1{|y|<ε

√
n} dy

We then have to use some sort of limit-integral interchange theorem to make
that boy clean. Here, we can use the Dominated Convergence Theorem, since
(1− y2/n)n ≤ exp(−y2):

lim
n→∞

∫ ∞
−∞

(
1− y2

n

)n
1{|y|<ε

√
n} dy =

∫ ∞
−∞

lim
n→∞

(
1− y2

n

)n
1{|y|<ε

√
n} dy

=

∫ ∞
−∞

e−y
2
dy =

√
π
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10 Special functions

10.1 Power series

Definition 10.1. A power series is a function defined by

f(x) =
∞∑
n=0

anx
n

(where an are constants) on the interval of x where the function converges. You
can also have a power series centered at a point a 6= 0 but whatever.

By the ratio or root test you can show that there is some number R such that
f(x) converges for all |x| < R and diverges for all |x| > R. The unique number
R ∈ [0,∞] is called the radius of convergence, and is given by

1

R
= lim sup

n→∞
n
√
|an| or

1

R
= lim sup

n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
The points where |x| = R are undetermined, so you must check them yourself.

Properties of power series:

• Continuity

• Uniform convergence within any open subinterval of the interval of con-
vergence.

• Termwise differentiability

• Termwise integrability

i Taylor Series

If f ∈ C∞, then we may define the power series, known as the Taylor series,
given by

f(x) =

∞∑
n=0

f (n)(0)

n!
xn

on some interval of convergence. If a function has a power series expansion, then
it must be given by the Taylor series.
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ii Important power series

1

1− x
=

∞∑
n=0

xn = 1 + x+ x2 + . . . (|x| < 1)

log(1 + x) =
∞∑
n=0

(−1)n
xn+1

n+ 1
= x− x2

2
+
x3

3
− . . . (|x| < 1)

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2
+ . . . (x ∈ R)

cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2
+
x4

4!
+ . . . (x ∈ R)

sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
+ . . . (x ∈ R)

(1 + x)α =

∞∑
n=0

(
α

n

)
xn = 1 + αx+

α(α− 1)

2!
x2 + . . . (|x| < 1)

10.2 Bump functions

A bump function is a C∞ function with compact support. The canonical example
is

exp

(
1

x2 − 1

)
1|x|<1.

Bump functions make nice counterexamples.

10.3 The gamma function

Definition 10.2. For x ≥ 0, we can define the gamma function by

Γ(x) =

∫ ∞
0

tx−1e−t dt

Properties

1. Γ(x) =
∫∞

0 log
(

1
t

)x−1
dt.

2. Γ(x+ 1) = xΓ(x).

3. For n ∈ N, Γ(n) = (n− 1)!.

4. log Γ is convex.

5. The gamma function is the unique function on (0,∞) satisfying properties
(2) and (4).

6. Γ(1
2) =

√
π.
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i The beta function

Definition 10.3. If x, y > 0, the beta function is given by

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=

∫ 1

0
tx−1(1− t)y−1 dt.

ii Stirling’s formula

The gamma function can be used to determine Stirling’s formula:

lim
x→∞

Γ(x+ 1)

(x/e)x
√

2πx

It is often expressed by

n! ∼
√

2πn
(n
e

)n
.

10.4 Fourier series

The goal of Fourier series is to represent a function f as a sum of elementary
trig functions:

f(x) =
a0

2
+
∞∑
k=1

[ak cos(kx) + bk sin(kx)]

Here we have used the scaling factor 1
2 in the first term (which corresponds to

cos(0x)) for reasons that will be explained later.

It turns out that the trig functions
{

1√
2
, cosx, sinx, cos 2x, sin 2x, . . .

}
are

orthonormal according to the inner product defined by

〈f, g〉 =
1

π

∫ π

−π
f(x)g(x) dx

‖f‖ =

√
1

π

∫ π

−π
f(x)2 dx

The best representation of a function f : [−π, π] → R in the space of trig
functions is given by the orthogonal projection:

f(x) ∼ projV f =

〈
f,

1√
2

〉
1√
2

+ 〈f, cosx〉 cosx+ 〈f, sinx〉 sinx+ . . .

=
a0

2
+
∞∑
k=1

[ak cos kx+ bk sin kx]

where

ak = 〈f, cos kx〉
bk = 〈f, sin kx〉.
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The 1
2 factor in the a0 term comes from the fact that 1√

2
is sort of an awkward

basis vector to work with. If we write
〈
f, 1√

2

〉
1√
2

= 〈f, 1〉12 then we can write

ak = 〈f, cos kx〉 for all k. This makes our equations a little more suave.
The convergence of the Fourier series is not guaranteed for arbitrary functions.

However, under broad assumptions (e.g., f ∈ C 1), the Fourier series converges
to f , and the convergence is uniform if for example f ∈ C 2.

i Even and odd functions

These facts are often useful for computations:

• If f is even, then bk = 0 for all k ∈ N.

• If f is odd, then ak = 0 for all k = 0, 1, . . . .

ii Complex Fourier series

Euler’s formula, ex = cosx+ i sinx, suggests that we should be able to use the
complex exponential to write a Fourier series. This is indeed true, but we need
to use the Hermitian inner product:

〈f, g〉 =
1

2π

∫ π

−π
f(x)g(x) dx

‖f‖ =

√
1

2π

∫
π
π|f(x)|2 dx

where the overbar indicates taking the complex conjugate. Then, the complex
exponentials {eikx}, k ∈ Z, form an orthonormal set. This yields the complex
Fourier series

f(x) ∼
∞∑

k=−∞
cke

ikx, where

ck = 〈f, eikx〉 =
1

2π

∫ π

−π
f(x)e−ikx dx.

Note the minus sign in the integral for ck, which occurs because we are taking
the Hermitian inner product.

We can also relate the complex Fourier series to the standard Fourier series:
For k = 0, 1, 2, . . . ,

ak = ck + c−k ck =
1

2
(ak − ibk)

bk = i(ck − c−k) c−k =
1

2
(ak + ibk)

Theorem 12 (Bessel’s inequality).

∞∑
n=1

|cn|2 ≤
∫ π

−π
|f(x)|2 dx
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Theorem 13 (Parseval’s identity).

1

2π

∫ π

−π
|f(x)|2 dx =

∞∑
n=−∞

|cn|2

iii Fourier series on generic intervals

For functions on an interval [−L,L], we have

f ∼ a0

2
+
∞∑
k=1

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
, where

ak =
1

L

∫ L

−L
f(x) cos

(
kπx

L

)
dx,

bk =
1

L

∫ L

−L
f(x) sin

(
kπx

L

)
dx

For complex Fourier series:

f(x) ∼
∞∑

k=−∞
cke

i( kπxL ), where

ck = 〈f, eikx〉 =
1

2L

∫ L

−L
f(x)e−i(

kπx
L ) dx.

iv Fourier transforms

If we expand Fourier series to the entire real line, we get the Fourier transform.
The Fourier transform is important because it allows us to see the breakdown
of wavenumbers of a signal.

The Fourier transform of a function f : R→ R is given by

f̂(k) =
1

2π

∫ ∞
−∞

f(x)e−ikx dx

The inverse Fourier transform is then

f(x) =

∫ ∞
−∞

f̂(k)eikx dk

Theorem 14 (Riemann-Lebesgue lemma). If f is integrable, then the Fourier
transform decays at infinity:

lim
k→∞

∫ ∞
−∞

f(x)e−ikx dx = 0.
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11 Multivariable calculus

11.1 Differential operators

Gradient Let f : R3 → R be a scalar function. The gradient of f is denoted
by ∇f and is given by

∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
(1)

If instead F : R3 → R3 is a vector field, then the gradient is defined as the
Jacobian of F :

∇F = DF =


∂F1
∂x

∂F1
∂y

∂F1
∂z

∂F2
∂x

∂F2
∂y

∂F2
∂z

∂F3
∂x

∂F3
∂y

∂F3
∂z


Sort of, anyway. It’s probably best thought of as a matrix of row vectors, where
the rows are the gradients of F1, F2, and F3 respectively. Then when you carry
out the dot products it’s not like a matrix multiplication.

Divergence Let F : R3 → R3 be a vector field. The divergence of F is
denoted by ∇ · F and is given by

∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

Curl Let F : R3 → R3 be a vector field. The curl of F is denoted by ∇× F
and is given by

∇× F =

(
∂F3

∂y
− ∂F2

∂z

)
ı̂ +

(
∂F1

∂z
− ∂F3

∂x

)
̂ +

(
∂F2

∂x
− ∂F1

∂y

)
k̂

Laplacian Let f : R3 → R. The Laplacian of f is denoted by ∇2f or ∆f and
is given by

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

Note that ∇2f = ∇ · (∇f).

i General properties

• Linearity

• Product rule

• Quotient rule
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ii Identities

1. ∇× (∇f) = 0

2. ∇ · (∇× F ) = 0

3. ∇(F ·G) = (F · ∇)G + (G · ∇)F + F × (∇×G) + G× (∇× F )

4. ∇ · (F ×G) = (∇× F ) ·G− F · (∇×G)

5. ∇× (F ×G) = (∇ ·G)F − (∇ · F )G + (G · ∇)F − (F · ∇)G

11.2 Properties of the gradient

i Directional derivatives

Definition 11.1. Let f : Rn → R be a scalar function and v ∈ R a unit vector.
The directional derivative of f in the direction v is given by

∇vf(x) = lim
h→0

f(x + hv)− f(x)

h

It’s not hard to show that, if the limit is defined for all v,

∇vf(x) = ∇f(x) · v.

From this it is clear that the gradient is the direction of steepest ascent:

∇vf(x) = ∇f(x) · v = ‖∇f(x)‖‖v‖ cos θ

where the directional derivative is maximized when cos θ = 1; i.e., θ = 0, so that
∇f and v are pointing in the same direction.

Now consider a level set {x ∈ Rn : f(x) = C}. Let t be a vector tangent to
the level set. Since traversing the curve in the direction of the level set doesn’t
change f(x), we must have that ∇tf(x) = 0. In other words, ∇f(x) · t = 0, so
the gradient is perpendicular to vectors tangent to the level set.

In summary:

1. The gradient points in the direction of greatest increase of f .

2. The gradient of f is perpendicular to level sets of f .

ii Lagrange multipliers

If we would like to optimize a scalar function f subject to a constraint specified
by g(x) = 0, the theory of Lagrange multipliers states that this happens when
the gradients point in the same direction:

∇f = λ∇g

for some scalar λ. Basically, the idea here is that if the gradients are not parallel,
you can still traverse the constraint level set g = 0 in a direction which will
increase (or decrease) f . See Figure 7.

If we instead require that f be optimized subject to the constraints g1 = 0,
. . . , gk = 0, we search for solutions of the equation

∇f = λ1∇g1 + · · ·+ λk∇gk
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Figure 7. Visualization of Lagrange Multipliers for 2D case.

11.3 Jacobian and change of coordinates

Let F : Rn → Rm. The Jacobian matrix of F is the m× n matrix defined by

DF =


∂F1
∂x1

. . . ∂F1
∂xn

...
. . .

...
∂Fm
∂x1

. . . ∂Fm
∂xn


The Jacobian is also denoted by JF (x), ∂(F1,...,Fm)

∂(x1,...,xn) , and ∂(F )
∂(x) .

The Jacobian matrix is also known as the total derivative of F . If x,a ∈ Rn,

F (x)− F (a) = DF (a) + o(a).

i General coordinate changes

The Jacobian is particularly important for coordinate transformations. In 1D,
the substitution formula is given by∫ b

a
f(u(t))u′(t) dt =

∫ u(b)

u(a)
f(u) du.

Similarly, for integration of a scalar-valued function f : Rn → R and an injective
function u : Ω ⊆ Rn → Rn, we have that∫

Ω
f(u(x))

∣∣∣∣∂(u)

∂(x)

∣∣∣∣ dx =

∫
u(Ω)

f(u) du

where dx = dx1 . . . dxn, du = du1 . . . dun and
∣∣∣∂(u)
∂(x)

∣∣∣ is the determinant of the

Jacobian matrix evaluated at x.
The change of coordinates rule is often written in reverse, by setting D =

u(Ω) and noting that D = u−1(u(D)) for injective functions:∫
D
f(u) du =

∫
u−1(D)

f(u(x))

∣∣∣∣∂(u)

∂(x)

∣∣∣∣ dx.
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ii Cylindrical coordinates

Under the transformation (x, y, z) = u(r, θ, z) given by

x = r cos θ

y = r sin θ

z = z,

The Jacobian determinant is given by∣∣∣∣∂(x, y, z)

∂(r, θ, z)

∣∣∣∣ = r.

Therefore,
y

D

f(x, y, z) dx dy dz =
y

R

f(r, θ, z) r dr dθ dz

where R = u−1(D) is usually some nice rectangle in (r, θ, z)-space.

iii Spherical coordinates

Under the transformation (x, y, z) = u(ρ, θ, ϕ) given by

x = ρ cos θ sinϕ

y = r sin θ sinϕ

z = ρ cosϕ,

The Jacobian determinant is given by∣∣∣∣∂(x, y, z)

∂(ρ, θ, ϕ)

∣∣∣∣ = ρ2 sinϕ.

Therefore,
y

D

f(x, y, z) dx dy dz =
y

R

f(ρ, θ, ϕ) ρ2 sinϕ dρ dθ dϕ

where R = u−1(D) is usually some nice rectangle in (ρ, θ, ϕ)-space.

11.4 Multivariate integration

i Area and volume integration

Let f : Rn → R and Ω ⊆ Rn. The multiple integral of f is evaluated by∫
Ω
f dx =

∫
R1

· · ·
∫
Rn

f(x1, . . . , xn) dx1 . . . dxn

where Rn is a region defined by the bounds of Ω as a function of x2, . . . , xn,
Rn−1 is a region defined by the bounds of Ω as a function of x3, . . . , xn, etc.

Fubini’s theorem says that the order of integration does not matter and is
helpful for selecting more convenient bounds of integration.
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ii Line integration

Vector fields Given a vector field F : R3 → R3, let C ⊂ Rn be a smooth
oriented curve in space. We require a parametrization of the curve to evaluate
the integral. Let r(t), a ≤ t ≤ b be such a parametrization. Then the line
integral of F about C is given by∫

C
F · dr =

∫ b

a
F (r(t)) · r′(t) dt.

The line integral is well-defined, which is to say that different choices of the
parametrization r(t) yield the same integral value.

Scalar functions Given a scalar function f : R3 → R, and a smooth oriented
curve C, let r(t), a ≤ t ≤ b be a parametrization of C. The line integral of f
over C is ∫

C
fds =

∫ b

a
f(r(t)) ‖r′(t)‖ dt.

There is a connection between the notion of line integrals over vector fields
and scalar fields. If T is the unit tangent vector of r, then∫

C
F · dr =

∫
C
F · T ds.

iii Surface integration

Vector fields Given a vector field F : R3 → R3, let S ⊂ Rn be a smooth
oriented surface. Let X(s, t), (s, t) ∈ D be a parametrization of S. Then the
surface integral of F over S is given by

x

S

F · dΣ =
x

D

F (X(s, t)) ·
(
∂X

∂s
× ∂X

∂t

)
ds dt.

Scalar functions The integral of a scalar function f : R3 → R over S is given
by

x

S

f dS =
x

D

f (X(s, t))

∥∥∥∥∂X∂s × ∂X

∂t

∥∥∥∥ ds dt.

The connection between surface integrals of vector fields and scalar functions
is given by x

S

F · dΣ =
x

S

F · n dS,

where n is the standard normal vector of the surface.
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11.5 Fundamental theorems

Stokes’ theorems are the generalization of the fundamental theorem of calculus
in higher dimensions. In its most general form, Stokes’ theorem is the following:

Theorem 15 (Stokes’ theorem).∫
dΩ
ω =

∫
Ω
dω.

In this form, Stokes’ theorem invokes differential forms, which are a lot of
work to develop. Here, we can just focus on specific cases of Stokes’ theorem,
which are presented below.

i Gradient theorem

The gradient theorem says that the line integral of a gradient field can be eval-
uated just by knowing the behavior at the endpoints:∫

C
∇f · dr = f(b)− f(a)

ii Stokes’ theorem

Stokes’ theorem gives says that the surface flux of a curl field can be determined
simply from the circulation of its bounding curve:

x

S

(∇× F ) · dΣ =

∮
∂S

F · dr

iii Green’s theorem

Green’s theorem just plagarizes Stokes’ theorem, but restricts it to R2; for some
reason people decided it was important enough to be named after some guy.

iv Divergence theorem

The divergence theorem (also known as Gauss’ theorem) says that the volume
integral of a divergence field can simply be determined by the flux through the
bounding surface. y

V

∇ · F dV =
{

∂V

F · dΣ

11.6 Other theorems

i Implicit function theorem

Let F : R2 → R ∈ C 1.. Suppose F (x0, y0) = 0 and ∂
∂yF (x0, y0) 6= 0. Then the

implicit function theorem states that there is some function g : U → R defined
on a neighborhood U of x0 such that g ∈ C 1 and g(x0) = y0.

This is best illustrated by a picture (Figure 8).
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Figure 8. Illustration of the implicit function theorem

More generally, suppose F : Rm+n → Rn. Write x ∈ Rm, y ∈ Rn, so F (x,y).
Suppose F (x0,y0) = 0, and the Jacobian determinant det ∂F∂y (x0,y0) 6= 0. Then
there exists some function g : U → Rn defined on some neighborhood U of x0

such that g ∈ C 1 and g(x0) = y0.

ii Integration by parts

In R, integration by parts arises from integrating the product rule:

d

dt
(uv) = u

dv

dt
+
du

dt
v

=⇒ uv =

∫
u dv +

∫
v du

Likewise, in R3, we have the product rule for a divergence:

∇ · (gF ) = g∇ · F + F · ∇g

which implies, together with the divergence theorem, that
x

∂V

gF · ndS =

∫
V
g∇ · F dV +

∫
V
F · ∇g dV.

iii Reynolds’ Transport Theorem

Reynolds’ transport theorem is the R3 analogue to the Leibniz integral rule. Let
f : R3 × R→ Rn.

d

dt

∫
V (t)

f(x, t) dV =

∫
V (t)

∂

∂t
f(x, t) dV +

{

∂V (t)

f(x, t)v · dΣ
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where v is the velocity of the boundary.
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sub-interval, 24
subsequence, 9
subsequential limit, 9

43



Taylor series, 30
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