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Abstract14

Given the challenges of limited predictability and risks that extreme events pose, impos-15

ing quantitative constraints on the variability of geophysical fields under observable but16

fluctuating conditions is necessary for assessing climate hazards. Here, we propose a quan-17

tile regression neural network framework for estimating uncertainties with two novel yet18

tractable modifications to the loss function to enforce uniform quantile accuracy and re-19

duce the occurence of degenerate predicted probability distributions. We evaluate the20

quantile neural network against other conditional probabilistic baselines on a suite of datasets:21

synthetic datasets, observed in-situ daily temperature maxima from 1,501 NOAA Global22

Surface Summary of the Day (GSOD) weather stations, and altimetry-observed precip-23

itation from Tropical Rainfall Measuring Mission (TRMM). On synthetic datasets, the24

proposed quantile regression neural network accurately predicts conditional distributions25

where more restrictive methods like linear quantile regression or mean-variance estima-26

tion neural networks are deficient, mitigates shortcomings of some other quantile neu-27

ral network approaches, and converges stably under a range of different hyperparame-28

ters. Applying the quantile neural network to predict GSOD daily temperature maxima29

shows that temperature distributions may be relatively well-described as Gaussian, though30

nonlinear dependencies on the station sea level pressure and geopotential heights are likely31

important. On precipitation statistics, the quantile regression neural network strongly32

outperforms linear quantile regression and the Gaussian maximum likelihood network33

baselines, indicating it is able to capture the highly nonlinear and non-Gaussian condi-34

tional distributions of precipitation. The performance of the quantile regression neural35

network on a variety of datasets indicates that it is a simple, flexible, and general ap-36

proach that could be used to constrain aleatoric uncertainties for a myriad of geophys-37

ical quantities which may have nonlinear or non-Gaussian conditional dependencies.38

Plain Language Summary39

The climate system is highly chaotic and unpredictable, often yielding extremes40

and risks that must be quantified. In light of these uncertainties, we propose a data-driven41

probabilistic technique, a type of “quantile neural network,” for quantifying uncertain-42

ties which requires few assumptions and has a straightforard implementation. Using a43

synthetic dataset, we establish the advantages of this quantile neural network against44

baselines which require stronger assumptions, such as one that assumes linear relation-45

ships between inputs and outputs and one that assumes that uncertainties are normally-46

distributed. We then apply this technique to weather station temperature data and satel-47

lite observations of precipitation, finding that daily maximum temperatures are well-described48

by nonlinear relationships with normally-distributed uncertainties, whereas precipita-49

tion depends significantly nonlinearly on the inputs to the model and exhibits non-normal50

statistics. This work shows how quantile neural networks can be easily implemented to51

gain a more accurate representation of uncertainties in the geosciences.52

1 Introduction53

The climate system is governed by complex, highly nonlinear interactions between54

the atmosphere, ocean, land and cryosphere (Gupta et al., 2022), and the chaotic dy-55

namics that result can be difficult to predict with certainty given limited information about56

the system state (Vitart et al., 2017). Interactions between processes occur over a range57

of temporal and spatial scales, producing variability and extremes, often with adverse58

impacts to human populations (Newman & Noy, 2023). Given the lack of predictabil-59

ity in the climate system, accurately quantifying the uncertainty of geophysical fields un-60

der changing measurable conditions is crucial due to the hazards that can result from61

its chaotic dynamics.62
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Often, uncertainties in the atmosphere-ocean system are represented using Gaus-63

sian statistics. Gaussian assumptions underlie climate projections (Kopp et al., 2014; IPCC,64

2021), stochastic parameterization of sub-gridscale processes (Franzke et al., 2015), mea-65

surement approximations in data assimilation models and reanalysis products (Bocquet66

et al., 2010; Hersbach et al., 2020), linear inverse models (Penland, 1989; Penland & Sardesh-67

mukh, 1995), in-situ and altimetric observational product quality control and more. The68

Gaussian distribution’s relevance to characterizing a wide range of uncertainties in the69

Earth system can be attributed to a few theoretical considerations (Sura & Hannachi,70

2015). Firstly, the normal distribution plays a crucial role in the Central Limit Theo-71

rem, which states that the sample mean of independently and identically distributed ran-72

dom variables approaches a normal distribution as the sample size increases. The Cen-73

tral Limit Theorem implies that aggregation operations (e.g., the averaging involved in74

the measurement, simulation, and forecasting of geophysical quantitites) tend to produce75

normally distributed quantities (DelSole & Tippett, 2022). Another reason that the Gaus-76

sian distribution arises is due to its unique role as the maximum entropy distribution for77

a given mean and variance for quantities with unbounded support (Sura & Hannachi,78

2015; Majda & Wang, 2006). The principle of maximum entropy, first proposed by Jaynes79

(1957), is that the maximum entropy distribution (i.e. the least informative one under80

given constraints) is the most probable distribution. Thus, without further information81

constraining the form of the uncertainties, the Gaussian is the “best guess” of the un-82

derlying uncertainty.83

One approach to quantifying Gaussian uncertainties has gained significant traction84

for geoscience applications in recent years is mean-variance estimation (MVE) neural net-85

works. Proposed by Nix and Weigend (1994), MVE networks are data-driven models op-86

timized over the Gaussian negative log-likelihood to yield not only a point estimate, but87

also a standard deviation to quantify the level of uncertainty given the inputs. MVE net-88

works have been used for developing stochastic parameterizations (Guillaumin & Zanna,89

2021; Perezhogin et al., 2023; Wu et al., 2025), identifying drivers of predictability (Gordon90

& Barnes, 2022), identifying exceedance times of critical global warming thresholds (Diffenbaugh91

& Barnes, 2023) and more (Haynes et al., 2023; Barnes & Barnes, 2021; Schreck et al.,92

2024).93

Despite the proliferation of machine learning methods that assume Gaussianity, how-94

ever, many geophysical quantities are non-Gaussian. Observations of surface air temper-95

ature exhibit significantly non-Gaussian characteristics (Fig. 1; Proistosescu et al. (2016);96

Catalano et al. (2021); Cavanaugh and Shen (2014); McKinnon et al. (2016)), with nu-97

merous physical causes (such as tracer advection-diffusion processes and jet dynamics)98

supported by numerical simulations (Linz et al., 2018; Garfinkel & Harnik, 2017; Has-99

sanzadeh & Kuang, 2015) as well as theoretical arguments (Sura & Hannachi, 2015; Kimura100

& Kraichnan, 1993; McLaughlin & Majda, 1996; Hu & Pierrehumbert, 2002). Precip-101

itation statistics are highly non-Gaussian, and modelling precipitation statistics remains102

an active area of research (Ashkenazy & Smith, 2024; Li et al., 2023; Scheuerer et al.,103

2020; Beck et al., 2020; Martinez-Villalobos & Neelin, 2019). Deviations from Gaussian-104

ity have implications for the quantification of extremes (Bjarke et al., 2023; Loikith &105

Neelin, 2019), as well as the changes in likelihood of tail events under changing temper-106

atures (Loikith & Neelin, 2015).107

Studies such as Barnes et al. (2023) have relaxed the Gaussian assumption of MVE108

networks by training neural networks to estimate parameters of probability distributions109

which include skewness and kurtosis parameters (e.g., the “SHASH” distribution; Jones110

and Pewsey (2019)). Such approaches generalize the types of aleatoric uncertainties that111

can be estimated; nevertheless, they require parametric assumptions about the under-112

lying uncertainties which may not necessarily hold. For instance, the SHASH distribu-113

tion may inadequately represent precipitation statistics, in particular due to the incom-114

patability of nonnegative precipitation measurements with the SHASH’s unbounded sup-115
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Figure 1. Non-Gaussianity of daily maximum surface air temperature (TMAX) seasonal
anomalies, as measured by the sample’s (a) skewness, (b) kurtosis, and (c) Kullback-Leibler di-
vergence between the sample and a Gaussian estimated with the approach of Hyvärinen and Oja
(2000) using contrast function G(u) = log cosh u (higher values indicate greater deviations from
Gaussianity).

port. Alternatively, quantile regression techniques offer ways to estimate the response116

distribution without parametric assumptions about the distribution of uncertainties by117

using the optimization formulation for the quantile (Koenker & Bassett Jr, 1978; Koenker,118

2005). Linear quantile regression has been used for identifying temporal changes in dis-119

tributions of surface air temperature observations (McKinnon et al., 2016) and for sea120

surface heights simulated by climate models (Falasca et al., 2023). The quantile regres-121
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sion loss has also been used to train regression neural networks, starting with White (1992)122

and Taylor (2000). Such quantile regression neural networks give an appealing means123

of estimating uncertainties, as they allow for complete estimation of nonlinear functional124

dependencies and non-Gaussian statistics. Several studies have used the quantile regres-125

sion loss for neural networks to predict conditional probabilities, including for assessing126

financial risk (Chronopoulos et al., 2024; Keilbar & Wang, 2022), energy demands (W. Zhang127

et al., 2019; Tambwekar et al., 2021; Belloni et al., 2019), and healthcare outcomes risks128

(X. Zhang et al., 2025; Corsaro et al., 2024). Nevertheless, the use of quantile regression129

neural networks for geoscience applications seems to be limited to a few studies (Cannon,130

2018; Haynes et al., 2023; Bremnes, 2020; Papacharalampous et al., 2025). Technical chal-131

lenges, such as sample size limitations or complications associated with enforcing quan-132

tile monotonicity (Chernozhukov et al., 2010; Cannon, 2018; Padilla et al., 2022) may133

inhibit broader usage of quantile regression neural networks in the geosciences.134

In this paper, we propose a flexible and simple quantile regression neural network135

for estimating uncertainties. Our implementation of the quantile regression neural net-136

work uses the Rectified Linear Unit (ReLU) as a loss function to encourage quantile mono-137

tonicity during training, and we refer to it as the “ReLU bias loss quantile neural net-138

work” (RBLQNN). We evaluate the RBLQNN against baselines which assume Gaussian139

conditional distributions or linear dependence to assess the relative importance of lin-140

earity or Gaussianity assumptions in a variety of synthetic and observational datasets.141

After establishing the advantages of the RBLQNN on synthetic datasets, we assess the142

Gaussianity and linearity assumptions of two observational datasets: NOAA Global Sur-143

face Summary of the Day (GSOD) daily temperature measurements at 1,501 weather144

stations, and Tropical Rainfall Measuring Mission (TRMM) precipitation altimeter ob-145

servations.146

In Section 2, we formulate our approach to conditional probability estimation, and147

describe the RBLQNN, baselines, datasets, and metrics. Then, in Section 3 we evalu-148

ate the performance of the RBLQNN, demonstrating its advantages over the baselines149

and other quantile regression neural network techniques. In Section 4, we examine the150

importance of Gaussianity and linearity assumptions in the GSOD and TRMM datasets.151

We end with a discussion providing some perspectives on our results and describing caveats152

of the RBLQNN in Section 5.153

2 Methods154

2.1 Conditional probability estimation155

2.1.1 Formulation and optimization setup156

In this framework, geophysical target variables Y such as surface air temperature157

or precipitation are considered a function r of random variables158

Y = r(X, Ψ), (1)

where the X = (X1, . . . , Xp) represent observable random variates and Ψ represents159

the remaining aleatoric uncertainty. We seek to represent the distribution of the predic-160

tion variables conditioned on observed quantities Y |X = x.161

We express probabilities in terms of quantiles. For a continuous cumulative distri-162

bution function (CDF) F : R → (0, 1), the q-quantile yq is defined by yq = F −1(q).163

Because the CDF is unique for a given distribution, a probability distribution is fully char-164

acterized by the set of quantiles for q ∈ (0, 1). Thus, the conditional distribution of Y |X165

can then be formulated in terms of its quantiles (Y |X)q by functions f (q) : Rp → R166

as167

yq = (Y |X = x)q = f (q)(x). (2)
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Identifying the conditional distribution amounts to determining f (q) for q ∈ (0, 1).168

The key insight behind quantile regression techniques is that the q-quantile yq sat-169

isfies the following optimization problem (Koenker & Bassett Jr, 1978):170

yq = F −1(q) ⇐⇒ yq = argmin
u

E[ρq(Y − u)] = argmin
u

∫
R

ρq(y − u) dF (y), (3)

where the “pinball function” ρq(t) is defined by171

ρq(t) = qt1{t≥0} − (1 − q)t1{t<0}. (4)

The pinball function is plotted for various values of q in Supporting Figure S1. Intuitively,172

the pinball function asymmetrically penalizes data above and below a given value to ob-173

tain estimates for a specified quantile. For instance, when predicting a high quantile like174

q = 0.9, data y is heavily penalized for exceeding the minimization argument u in (3),175

but lightly penalized for subordinating u. This pushes the optimal value of u towards176

the higher end of the data. When q = 0.5, the pinball function is symmetric and re-177

duces to the absolute value of its argument (scaled by a factor of 0.5).178

This optimization formulation (3) is analogous to how the mean of a distribution179

is the argument minimizer of the variance functional:180

µ = EY ⇐⇒ µ = argmin
u

E[(Y − u)2] = argmin
u

∫
R
(y − u)2 dF (y). (5)

The optimization formulation (3) provides an avenue for determining conditional181

distributions using regression techniques. In a general regression problem, we seek to es-182

timate some property of the conditional distribution of Y |X by a functional f(X). This183

minimization formulation allows this functional to be empirically optimized over a class184

of candidate functions {fθ}θ∈Θ for a given dataset {(xi, yi)}n
i=1 sampled from the joint185

distribution (X, Y ). For example, in least-squares regression, the optimization formu-186

lation for the mean in (5) is used to empirically estimate the conditional mean:187

E[Y |X = x] = f(x) ≈ f̂θ(x), (6)

where188

f̂θ = argmin
fθ

{
1
n

n∑
i=1

(yi − fθ(xi))2

}
. (7)

In a similar vein, the optimization formulation for the quantiles (3) can be used to es-189

timate the conditional quantile of the distribution:190

yq = (Y |X = x)q = f (q)(x) ≈ f̂
(q)
θ (x), (8)

where191

f̂
(q)
θ = argmin

fθ

{
1
n

n∑
i=1

ρq (yi − fθ(xi))
}

. (9)

2.1.2 ReLU bias loss quantile regression neural network (RBLQNN)192

The RBLQNN is a multilayer perceptron fθ : Rp → Rm that outputs predicted193

quantiles for a discrete set of probability levels 0 < q1 < · · · < qm < 1:194

(ŷq1 , . . . , ŷqm) = fθ(x). (10)

Quantiles at intermediate probability levels q ̸= qj can then be approximated using in-195

terpolation techniques. In this study, we evaluate predictions of the quantiles using m =196
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19 equispaced probability levels with increments of ∆q = 0.05. This is a subjective choice197

loosely informed by statistical conventions (Fisher, 1970; Xu et al., 2017).198

Since the neural network predicts multiple quantiles simultaneously, the loss func-199

tion optimizes predictions for all quantiles:200

LQ(yi, ŷq,i) =
m∑

j=1
λjρqj (yi − ŷqj ,i). (11)

We propose to combine two simple additions for mitigating issues that may arise201

when using this loss for training:202

1. Quantile counterbalancing. At the quantile yq = F −1(q), the expected value of203

the quantile loss E [ρq(Y − yq)] is different for different probability levels q. In or-204

der to ensure that each quantile is optimized evenly, the loss weights λj in (11)205

should be chosen to be inversely proportional to the expectation λj = E [ρq(Y − yq)]−1.206

This expectation reduces to207

E [ρq(Y − yq)] = q (EY − E[Y |Y < yq]) . (12)

While the true expectation depends on the distribution of Y (which is unknown),208

Supporting Figure S2 shows that this expectation is not extremely sensitive to the209

type of distribution. For the purposes of developing bona fide weights, we assume210

a standard-normal distribution so that λj = exp
(

Φ−1(qj)
2

)
, where Φ is the CDF211

of the standard normal distribution.212

2. ReLU bias loss. Because the CDF must be monotonic, probability distributions213

become degenerate when predicted quantiles cross. That is, for q1 < · · · < qm,214

we must have that ŷq1 < · · · < ŷqm
. Various methods for avoiding quantile cross-215

ings have been proposed, such as monotone rearrangement of predicted quantiles216

(Chernozhukov et al., 2010), applying monotonicity constraints to function inputs217

(Cannon, 2018) or predicting nonnegative increments for successive quantile val-218

ues (Padilla et al., 2022). These methods range in complexity; here, we apply a219

simple bias loss to discourage quantile crossings during training while retaining220

the transparent output structure of the quantile regression neural network:221

LReLU(ŷq,i) =
m−1∑
j=1

ReLU(ŷqj ,i − ŷqj+1,i), (13)

where the Rectified Linear Unit function is given by ReLU(x) = x1{x≥0}. If any222

of the quantiles is greater than the succeeding quantile, the ReLU loss is positive.223

If all quantiles are ordered, then the ReLU penalty is 0.224

The net loss function that is used for training the RBLQNN is given by225

L(yi, ŷq,i) = LQ(yi, ŷq,i) + ηLReLU(ŷq,i), (14)

where η > 0 is a hyperparameter.226

2.1.3 Baselines227

The predicted distributions made by the quantile neural network are compared against228

two baselines: linear quantile regression (LQR) and mean-variance estimation (MVE)229

neural networks. Linear quantile regression allows for arbitrary conditional probability230

estimates, but the functional dependence on the regressors is assumed to be linear. On231

the other hand, mean-variance estimation networks allow for nonlinear dependencies, but232

restrict conditional probabilities to be Gaussian. Together, these baselines help assess233

the relative importance of nonlinearities and non-Gaussianity in the predicted conditional234

distributions.235
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2.1.3.1 Linear quantile regression (LQR) For linear quantile regression, it is as-236

sumed that the quantiles of the regressand depend linearly on the regressors:237

yq = (Y |X = x)q = β0(q) + β(q)T x. (15)

Accordingly, the family of functions minimized using (7) are limited to linear functions:238

β̂0(q), β̂1(q) = argmin
β0(q),β1(q)

1
n

n∑
i=1

ρq(yi − ŷq,i), (16)

where ŷq,i = β0(q) + β1(q)xi.239

For the linear quantile regression model, predictions are made for each quantile q1, . . . , qm240

simultaneously, so that weights are shared for different quantile predictions, which has241

been shown to improve predictions (Zou & Yuan, 2008; Jiang et al., 2012).242

2.1.3.2 Mean-variance estimation (MVE) neural networks As an alternative to243

linear quantile regression, we explore predictions made by mean-variance estimation (MVE)244

networks (Nix & Weigend, 1994). MVE networks are artificial neural networks that yield245

predictions of conditional probability densities by outputting the parameters of a nor-246

mal distribution µ̂i = µ̂(xi), σ̂2
i = σ̂2(xi). (In practice, because the predicted stan-247

dard deviation should be positive, the log-variance log(σ̂2
i ) is typically used as an out-248

put of the neural network and then exponentiated to yield positive values of σ̂2
i .) Weights249

and biases in the neural network are updated by optimizing the log-likelihood of the tar-250

get data under the predicted parameters:251

L
(
yi, µ̂(xi), σ̂2(xi)

)
= − log p(yi|µ̂i, σ̂2

i ) = 1
2

[
log(σ̂2

i ) +
(

yi − µ̂i

σ̂i

)2
]

+ C, (17)

where p(y|µ, σ2) = 1√
2πσ

exp
[

1
2

(
y−µ

σ

)2]
is the probability density function of a nor-252

mal distribution with parameters µ and σ2, and C = 1
2 log 2π is an immaterial opti-253

mization constant. Quantile predictions are then given by ŷq = µ̂i + σ̂iΦ−1(q).254

2.1.3.3 Alternative quantile regression neural network approaches We also as-255

sess the performance of our quantile regression neural network trained on (14) against256

various other quantile regression neural network techniques:257

1. Unweighted network. This quantile neural network is trained using (11) with uni-258

form weighting λ1 = · · · = λm = 1, and is termed the “composite” network in259

Xu et al. (2017).260

2. No-bias network. This network uses the normal-distribution inverse-expectation261

weighting scheme λj = exp
(

Φ−1(qj)
2

)
. However, the bias loss of (13) is not ap-262

plied.263

3. Cumulative increment. Proposed in Padilla et al. (2022), this network enforces strict264

monotonicity by predicting positive increments between successive quantiles. Specif-265

ically, the network outputs values h1(x), . . . , hm(x) such that266

ŷqj
=

{
h1(x) (j = 1),
h1(x) +

∑j
k=2 log(1 + ehk(x)) (j = 2, . . . , m).

(18)

Since log (1 + et) > 0, monotonicity of predicted quantiles is strictly enforced.267

This network can then be trained using the loss function in (11) using equal weights268

λ1 = · · · = λm = 1.269

2.1.3.4 Mean squared error (MSE) neural networks In addition to the proba-270

bilistic baselines, a neural network trained using the Mean Squared Error (MSE) to pre-271

dict the target variable is also used as a deterministic baseline.272
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2.2 Datasets273

We evaluate the methods for conditional probability estimation on a suite of dif-274

ferent datasets: 1) synthetic datasets, 2) weather station daily temperature maxima, and275

3) altimetry-observed precipitation.276

2.2.1 Synthetic datasets277

We first demonstrate the performance of the different methods on three different278

synthetic datasets:279

• Dataset 1. Y = X2 + Ψ, where X ∼ N(0, 1) is drawn from a standard normal280

and Ψ is drawn from a Gumbel distribution. The Gumbel distribution, which is281

used in extreme value theory, was selected to represent the aleatoric uncertainty282

due to its non-Gaussianity and support on the entire real line.283

• Dataset 2. Y = Beta(α, β), where α = X+0.2, β = 1.2−X, and X ∼ U(0, 1) is284

uniform distributed on [0, 1]. This dataset was formulated to investigate the im-285

pacts of heteroscedasticity on the conditional probability estimation techniques.286

The Beta distribution has bounded support, providing an interesting test case for287

the RBLQNN and other baselines.288

• Dataset 3. Often, uncertainties of interest arise from quantities generated as a re-289

sult of a time-varying dynamic process. Thus, we consider a stationary distribu-290

tion generated from a two-dimensional stochastic gradient system of damped Langevin291

dynamics (Schlick, 2010) of x = (x, y),292

dx

dt
= −∇V (x) + ξ, (19)

where V (x) is a potential function and ξ ∼ N(0, 1) is white noise. The station-293

ary joint distribution f yielded by the dynamics is governed by the steady-state294

Fokker-Planck equation, with solution given by the Boltzmann distribution f(x, y) ∝295

e−V (x,y) (Landau & Lifshitz, 2013). The conditional distributions can then be com-296

puted using numerical integration. We consider a potential of the form297

V (x, y) =
3∏

i=1

(
(x − xi)2 + (y − yi)2)

(20)

which contains local minima at the points (xi, yi). For this dataset, we set (x1, y1) =298

(− 1
2 , − 1

2 ), (x2, y2) = (1, −1), and (x3, y3) = (1, 1
2 ), which yields a unimodal con-299

ditional distribution at x = x1 and a bimodal conditional distribution at x =300

x2 = x3. We simulate the trajectories from the origin using an Euler-Maruyama301

solver with timesteps ∆t = 10−4 up to a final time of T = 50, 000. The joint302

distribution and corresponding histogram with 10,000 bins (100 equispaced bins303

in x and y) are shown in Supporting Figure S3. Histogram frequencies are within304

2% of the true density for all bins, indicating that the samples are consistent with305

the theoretical distribution yielded by the Fokker-Planck equation. In order to ver-306

ify that samples are drawn from the stationary distribution, Supporting Figure S4307

shows the ensemble mean and spread of the magnitude ∥(x, y)∥2 to show that ini-308

tial condition information is lost after a few seconds of simulation time. The train-309

ing, validation, and testing sets are randomly sampled from the values generated310

by this timeseries.311

Figures 2a, 2e, and 2i show the quantiles of the conditional distribution of Y |X and312

samples drawn from the joint distribution (X, Y ) for the three synthetic datasets. For313

each dataset, we examine performance using training sets of n = 10, 000 samples, val-314

idating training on a dataset of 1, 000 samples and measuring performance on a test dataset315

of 1, 000 samples. The input and target samples of Datasets 1 and 3 are standardized316
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using the training dataset mean and standard deviation. No standardization or normal-317

ization was applied to Dataset 2, as the samples already take values between 0 and 1.318

2.2.2 NOAA Global Surface Summary of the Day daily temperature max-319

ima320

We next consider temperature observations from 1,501 weather stations over 1960–321

2020 given by the National Oceanic and Atmospheric Administration’s (NOAA) Global322

Surface Summary of the Day (GSOD) dataset (NOAA National Centers of Environmen-323

tal Information, 1999). The GSOD dataset contains daily summary statistics for 18 sur-324

face meteorological variables derived from the NCEI Integrated Surface Hourly (ISH)325

dataset (Lott et al., 2001; A. Smith et al., 2011). We use the daily maximum temper-326

atures (TMAX) and daily-mean sea level pressures (SLP) from this dataset. In addition,327

we supplement the GSOD dataset with 500 mb and 850 mb geopotential heights (z500,328

z850) from ECMWF’s ERA5 reanalysis (Hersbach et al., 2020). These variables were in-329

cluded to provide synoptic information about the atmospheric circulation at the mid-330

dle and lower troposphere. For each weather station, models are fitted to predict TMAX331

conditioned on concurrent station-derived SLP and geopotential heights from the near-332

est ERA5 gridpoint. Separate models are trained for each station.333

The GSOD dataset contains records from more than 9,000 stations. We filter data-334

limited stations by requiring a minimum number of observations for training, validation,335

and testing. We use data from years 1960–2010 for training, 2011–2015 for validation,336

and 2016–2020 for testing, and stations are rejected if there are fewer than 30 years of337

daily records for training (10,950 samples) or 3 years for validation or testing (1,095 sam-338

ples). This leaves 1,501 stations for our analysis. Inputs and targets are not detrended339

or deseasonalized, but values are standardized according to the mean and standard de-340

viation of the training data for each station.341

2.2.3 TRMM altimetry precipitation observations with ERA5 reanal-342

ysis343

As an additional test case, we use reanalysis and altimetry observations of atmo-344

spheric predictors to predict altimetry-observed precipitation levels. The samples in the345

dataset consist of hourly snapshots in a 2◦×2◦ box along swaths measured by the Trop-346

ical Rainfall Measuring Mission (TRMM) satellites from 2000–2010 (Kummerow et al.,347

2000). As predictors from ERA5, we use equivalent potential temperatures averaged over348

the planetary boundary layer (1000–900mb) and free troposphere (850–400mb), as well349

as column relative humidities and precipitable water integrated over the planetary bound-350

ary layer and free troposphere. Additionally, we use convective available potential en-351

ergy, surface air temperatures, 500-hPa vertical velocities, and entire-troposphere pre-352

cipitable water from ERA5. Finally, the subgrid percentage of convective and stratiform353

areas measured by TRMM radar are used, as they are a leading indicator of precipita-354

tion amount (Ahmed & Schumacher, 2015). The first 80% of observations are used for355

training (176,224 samples), while the validation and testing set consist of the penulti-356

mate and final 10% of samples, respectively (22,028 samples).357

2.3 Metrics358

We employ several metrics to assess our predictions:359

1. Discrimination metrics. The Mean Absolute Error (MAE) between the true quan-360

tiles at probability level q (yq) and prediction (ŷq) is computed by361

MAE(yq, ŷq) = 1
n

n∑
i=1

|yq,i − ŷq,i|. (21)
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Low quantile prediction MAE implies that forecasts are correctly approximating362

the conditional probability distribution. However, it requires that the ground truth363

distribution is available.364

2. Calibration metrics. Calibration, also sometimes referred to as reliability, measures365

the probability of forecasted events against the frequency of those events (Dawid,366

1982; Gneiting et al., 2007). To measure calibration, the Probability Integral Trans-367

form (PIT) (Dawid, 1984) is useful. The premise of the PIT is that the predicted368

cumulative distribution F̂i evaluated at the observed value yi should follow a uni-369

form distribution. Thus, the histogram of pi = F̂i(yi) should be approximately370

flat, and the deviations from a flat histogram can be measured against the expected371

level of deviation for a truly uniform distribution. The prediction of different quan-372

tiles also lends itself naturally to computing PIT histograms. Consider m uniform373

quantile predictions ŷq1,i, . . . , ŷqm,i for a given sample i. This partitions the real374

line into B = m + 1 bins Bk = [ŷqk,i, ŷqk+1,i) for k = 0, . . . , m, using the con-375

vention that ŷq0,i = −∞ and ŷqm+1,i = ∞. Given samples i = 1, . . . , n, let nk376

be the total number of observations yi that fall in Bk. The deviation statistic is377

given by378

D =

√√√√ 1
B

m∑
k=0

(
rk − 1

B

)2
, (22)

where rk = nk

n gives the frequency of the kth bin. This deviation statistic is mea-379

sured against the expected level of deviation for a true uniform distribution (Bourdin380

et al., 2014)381

ED =
√

1 − B−1

nB
. (23)

Alternatively, the likelihood of the deviation statistic D can also be quantified un-382

der the null hypothesis that the PIT histogram is sampled from a uniform distri-383

bution. Under the limit of large sample size n and bin counts nk, the deviation384

statistic for samples from a uniform distribution has a chi-squared distribution (Wasserman,385

2004):386

nB3D2 ∼ χ2(B − 1). (24)

Thus, the deviation statistic can be used to test the null hypothesis of uniformity387

against the alternative that the PIT histogram is not uniform (and that the pre-388

dicted distributions are not well-calibrated).389

3. Proper scores. We also consider the continuous ranked probability score (CRPS;390

Matheson and Winkler (1976)). The CRPS measures the quality of a probabilis-391

tic prediction F̂ against an observed value y. The CRPS is given by392

CRPS(F̂ , y) =
∫ ∞

−∞

(
F̂ (x) − 1{x>y}

)2
dx. (25)

The CRPS is a strictly proper scoring rule, meaning that on expectation, it is op-393

timal when F̂ is the true sampling distribution for the observations y (Gneiting394

& Raftery, 2007). Thus, the CRPS cannot be improved by hedging for alterna-395

tive outcomes. Predictions are penalized for being overconfident as well as under-396

confident; as such, the CRPS assesses both the calibration and the sharpness of397

the predicted distributions simultaneously. Notably, the CRPS is a generalization398

of the Mean Absolute Error in the case in which predictions are point estimates399

and F̂ (x) is a Heaviside function. The CRPS can be approximated directly from400

the predicted quantiles by using the quantile formulation of the CRPS from Laio401

and Tamea (2007) and employing numerical approximations (Bröcker, 2012; Tag-402

gart, 2023). Under equispaced quantile predictions, this is evaluated as403

CRPS(ŷq, y) = 2
m

m∑
j=1

q(y − yqj
)1{y>yqj

} + (1 − q)(yqj
− y)1{y≤yqj

}, (26)
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which is simply double the average pinball loss of the observation under the given404

quantiles.405

2.4 Optimization and training procedure406

For an appropriate comparison between the RBLQNN and other baselines, sim-407

ilar architectures and hyperparameter configurations are used for all models for each dataset408

considered in this study. The hyperparameter configurations for each dataset are given409

in Supporting Table S1. A hyperparameter sweep over different learning rates, model410

sizes, and regularizations for the synthetic datasets (Fig. 5) indicated that models con-411

verged well under similar configurations for the RBLQNN and baselines, justifying the412

use of identical learning rates and network sizes for comparison of different model types.413

Model weights are optimized using the Adam optimizer (Kingma & Ba, 2014). Weights414

are saved as checkpoints at the end of each epoch during training, and the checkpoint415

with the best loss over the validation set is used for analysis on the test set. Early stop-416

ping is also employed to limit computational costs from training many thousands of net-417

works.418

MVE networks are known to have some stability issues due to gradients typically419

being more sensitive to the predicted standard deviation than the predicted mean (Sluijterman420

et al., 2024; Seitzer et al., 2022). Therefore one recommendation from Nix and Weigend421

(1994) is to employ a “warm-up period” where only the mean is optimized but the vari-422

ance is fixed over the first few epochs. To enforce training stability, during the initial warmup423

phase a fixed variance σ2
F is prescribed in equation (17), and outputted predicted log-424

variances are penalized for deviations from this fixed variance using an MSE loss:425

L
(
yi, µ̂(xi), σ̂2(xi)

)
= 1

2

[(
yi − µ̂i

σF

)2
]

+ (log σ̂2
i − log σ2

F )2, (27)

where the first term is taken from the Gaussian log-likelihood loss (17) and the second426

term penalizes predicted log-variances, respectively.427

The RBLQNN was found to converge more stably than the MVE networks with-428

out any such warm-up period. However, including an analogous warm-up phase for the429

RBLQNN tended to result in sharper conditional probability estimates. Thus, for the430

RBLQNN, during the same initial warm-up epochs used for the MVE networks, an MSE431

loss is used between the outputs of the RBLQNN and training targets. After the warm-432

up period is complete, the weights are adjusted using the loss (14) to predict the quan-433

tiles of the distribution.434

A summary of the hyperparameter configurations for each dataset is given in Sup-435

porting Table S1.436

3 Model performance on synthetic data437

3.1 Model error438

Figure 2 shows the predicted quantiles of the different conditional probability es-439

timation techniques on the three synthetic datasets described in Section 2.2.1. Signed440

errors ŷq−yq in the quantile predictions as a function of x are given in Supporting Fig-441

ure S5. These datasets clearly illustrate the limitations of LQR and the MVE neural net-442

works: LQR fails to estimate highly nonlinear functional dependencies (e.g. Figure 2b),443

while MVE networks fail to capture non-Gaussian conditional distributions (Fig. 2g).444

However, even in situations where the assumptions of linearity or Gaussianity offer de-445

cent but imperfect approximations, the RBLQNN results in better estimates of the con-446

ditional distributions. For instance, although the normal distribution and Gumbel dis-447

tribution share certain features such as unimodality and infinite support (Fig. 2a), the448

–12–
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RBLQNN is able to capture the skewness of the distribution (Fig. 2d) while the MVE449

neural network cannot (Fig. 2c). Similarly, although the linear quantile regression ac-450

curately approximates the nearly linear median quantiles of Dataset 2 (Fig. 2e and 2g),451

the quantiles at the tails of the distribution are poorly predicted by the linear quantile452

regression model while they are well-fit for the RBLQNN (Fig. 2h).453
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Figure 2. Predicted conditional quantiles on Synthetic Dataset 1 (a–d), Dataset 2 (e–h), and
Dataset 3 (i–l). Scatterplot shows the test sample generated from the ground truth distribution,
while colored lines indicate predicted quantiles at specified probability levels q. (a, e, i) True
quantiles. (b, f, j) Predictions made using linear quantile regression. (c, g, k) Predictions made
using MVE networks. (d, h, l) Predictions made using the RBLQNN.

Figure 3 shows the average errors of each of the individual quantile predictions av-454

eraged over the test set and further demonstrates how the assumptions made by each455

baseline result in poorly predicted distributions. Dataset 1 shows that inadequately cap-456

turing nonlinear dependencies with linear quantile regression can result in systematically457

large errors for all quantiles in the predicted conditional distribution (Fig. 3a). The MVE458

network resolves the issue of nonlinearity, but the assumption of Gaussianity can result459

in poor estimation of particular quantiles. For instance, while the MVE network provides460

reasonable estimates for the bulk of the distribution in Dataset 1, the tails of the dis-461

tribution tend to be underestimated (Fig. 2c and Fig. 3a). Large errors in the tails of462

the distribution also occur in Dataset 2 and 3, as the Gaussian approximation is unable463

to capture the compact support of the distribution for Dataset 2 nor the bimodality of464

Dataset 3. The bimodality of Dataset 3 also results in the MVE network producing poor465

quantile predictions near each lobe of the bimodal conditional distribution (Fig. 2k and466

3c). In contrast with each of these baselines, the RBLQNN tends to produce quantile467

predictions with good predictions for all quantiles of the distribution.468

3.2 Comparison against other quantile regression neural network ap-469

proaches470

Figure 4 compares the performance of the RBLQNN to the alternative quantile re-471

gression neural network approaches given in Section 2.1.3. Since the network performance472

is sensitive to the weight initialization, for each quantile neural network method, an en-473
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Figure 3. Mean absolute errors of predicted quantiles for the RBLQNN (red), linear quantile
regression (light green), and MVE neural network (blue) for (a) Synthetic Dataset 1 and (b) Syn-
thetic Dataset 2.

semble of 100 networks with weights initialized using different random seeds is used to474

robustly evaluate performance.475

For the three synthetic datasets, the RBLQNN tends to produce better quantile476

predictions than the baseline quantile neural network techniques (Fig. 4a, 4c, and 4e).477

The RBLQNN error is similar to, though on average slightly lower than, the quantile neu-478

ral networks which directly predict quantiles (the “unweighted” and “no-bias” networks).479

This seems to be primarily due to the inclusion of the ReLU bias loss (Eq. 13), as the480

comparisons between the two baselines with different quantile weighting schemes do not481

result in substantially different performance. Including the ReLU bias loss to encour-482

age predicted distributions to be valid may impose stability constraints which facilitate483

network convergence during training.484

Figure 4b, 4d, and 4f show the proportion of test samples which result in mono-485

tonic quantile predictions (i.e., nondegenerate conditional probabilities). The RBLQNN486

results in significant reductions in the number of predicted conditional distributions that487

are degenerate when compared to the unweighted and no-bias networks. For instance,488

applying the ReLU bias loss in Dataset 2 reduces the average number of samples with489

quantile crossings from more than 25% to less than 3% (Supporting Table S2). For Dataset490

3, all but two ensemble members completely eliminate quantile crossings with the RBLQNN,491

whereas roughly 20% of ensemble members have quantile crossings for the unweighted492

and no-bias quantile networks (Supporting Table S3).493

While the RBLQNN reduces the number of quantile crossings compared to other494

quantile neural networks which directly predict quantiles, it does not completely elim-495

inate them. In contrast, the cumulative increment network’s design explicitly prohibits496

all quantile crossings. However, Figures 4a, 4c, and 4e all show that the predicted dis-497

tributions made using the cumulative increment network tend to be worse than the quan-498

tile neural networks which directly output quantiles. The relatively poorer performance499

of the cumulative increment network is likely due to instabilities resulting from the sum500

in (18) used for predicting higher order quantiles.501

3.3 Training stability502

A central challenge in the implementation of neural networks is that model per-503

formance can be sensitive to various hyperparameters (Goodfellow et al., 2016). Weights504

and biases in a neural network are normally optimized using stochastic gradient-based505

optimization techniques, which can evolve unpredictably under the highly nonconvex,506

high-dimensional loss landscapes set by the training data, network architecture, regu-507

larization, and loss functional. The convergence of a neural network thus depends on all508

of the factors that determine the loss landscape as well as the specifications that pre-509
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Figure 4. Performance of different quantile regression neural network techniques on Syn-
thetic Dataset 1 (a, b), Dataset 2 (c, d), and Dataset 3 (e, f). (a, c, e): Mean absolute errors
for quantile neural network predictions, averaged over 100 ensembles created by initializing net-
work weights with different random seeds. Red: RBLQNN (Eq. 14). Blue: Unweighted quantile
regression neural network of Xu et al. (2017). Light green: No-bias quantile regression neural
network framework implementing the inverse-expectation weighting but without the ReLU bias
loss (Eq. 13). Purple: cumulative increment network of Padilla et al. (2022). (b, d, f) Boxplots
showing the fraction of nondegenerate probability distributions predicted by each quantile neural
network approach. Conditional probability distributions are considered degenerate for a given
sample if the predicted quantiles are not monotonic.

scribe the optimization procedure. As a result, hyperparameter selection often requires510

extensive tuning or automated sweeps over various configurations to obtain a well-fitted511

model. It is therefore advantageous to train using a loss function that tends to converge512

robustly over a range of different hyperparameters and datasets. We investigate the sen-513

sitivity of the RBLQNN against the MVE networks for the three synthetic datasets.514

–15–



manuscript submitted to JGR: Machine Learning and Computation

Network training is often particularly sensitive to hyperparameters such as the learn-515

ing rate, network architecture, and regularization (L. N. Smith, 2018; Godbole et al., 2023).516

Therefore, we apply a grid search of different hyperparameters over a range of learning517

rates, regularizations, and network sizes with values provided in Supporting Table S4.518

We use eight different learning rates, three regularization levels, 2 layer sizes and 3 dif-519

ferent numbers of neurons per layer, to sample a total of 144 hyperparameter combina-520

tions. All other hyperparameters are set using the configuration given in Supporting Ta-521

ble S1.522

Figure 5a shows the best validation loss attained during training by the RBLQNN523

and MVE network for each of the 144 hyperparameter combinations. To permit a com-524

parison between the different loss functions for the different networks, validation losses525

are normalized to the [0, 1] range so that the hyperparameter configuration with the low-526

est loss over the 144 hyperparameter combinations has a normalized value of 0 and the527

highest loss has a normalized value of 1. Kernel density estimates indicate that losses528

cluster near the minimum values, indicating convergence for a broad range of hyperpa-529

rameters for both the RBLQNN and MVE networks. However, for each of the three datasets,530

more values cluster near the minimum loss for the RBLQNN than for the MVE network,531

suggesting that training tends to be more stable for the RBLQNN than for the MVE net-532

work. Notably, the RBLQNN appears to attain strong performance for a broader range533

of learning rates, a crucial hyperparameter for neural network training. For low learn-534

ing rates (e.g. 10−8), normalized validation losses are high for each network; however,535

increasing learning rates results in better performance gains for the RBLQNN than for536

the MVE network (e.g., a normalized validation loss that is 18.2% lower on average for537

the RBLQNN than MVE network when using learning rates of 10−7). For high learn-538

ing rates (10−1), losses begin to increase significantly for the MVE network but less so539

for the RBLQNN.540

Figure 5b, 5c, and 5d show the empirical cumulative distribution function of the541

losses given in the strip plots in Figure 5a for each of the three synthetic datasets. The542

CDF of the RBLQNN is above the CDF of the MVE network at most loss levels, indi-543

cating that a greater proportion of RBLQNN converge within a given margin of the low-544

est loss than the MVE networks. For instance, for Synthetic Dataset 1, only 66% (71%)545

of MVE neural networks converge within 5% (20%) of the minimum loss, whereas 69%546

(78%) of the RBLQNNs converge within this margin of the minimum loss.547

3.4 Sample-based metrics548

The low MAE of the predicted quantiles made on the synthetic datasets indicates549

that the RBLQNN can successfully approximate conditional distributions. However, for550

most datasets, the ground truth distribution is unknown, making it impossible to assess551

predicted conditional probabilities directly against the true distribution. In this section,552

we explore sample metrics that assess the predicted distributions against the data.553

Figures 6a, 6c, and 6e show histograms of the CRPS yielded by the predicted dis-554

tributions of the different conditional probability estimation techniques over the test set.555

Averaged over all test samples, the RBLQNN has the lowest average CRPS of the three556

conditional probability estimation techniques for all synthetic datasets. The sample av-557

erage CRPS for the RBLQNN nearly matches the CRPS obtained by using the ground558

truth conditional probability distribution for all three datasets.559

Despite the RBLQNN attaining a lower sample-averaged CRPS for all three datasets,560

the histograms of CRPS significantly overlap for each of the different methods. Since the561

CRPS is a sample-based metric which is optimal only on expectation, the statistical sig-562

nificance of the low sample-averaged CRPS must be assessed. To assess the statistical563

significance of the sample-averaged CRPS over a range of different sample sizes, we em-564

ploy bootstrapping with 100 ensemble members for a variety of bootstrap sample sizes565
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Figure 5. Training stability of the RBLQNN and MVE network evaluated over 144 hyper-
parameter combinations for the three synthetic datasets. (a) Strip plots of the lowest validation
loss attained during training for the RBLQNN and MVE for the three different datasets, with
gray shading showing a kernel density estimate. Losses are normalized to the [0, 1] range. Colors
indicate the learning rate. (b, c, d) Empirical CDFs of the normalized validation losses for each of
the three different synthetic datasets for the RBLQNN (red) and MVE network (blue). Boldface
percentages in the top left corner indicate proportion of neural networks which converge within
5% of the best loss from all hyperparameter configurations (indicated by dark gray shading).
Plain typeface percentages indicate proportions of neural networks within 20% of the best loss
(light gray shading).

Nb from 10 to 10, 000. For each ensemble member, Nb samples are drawn with replace-566

ment from the test set, and the sample-averaged CRPS is computed over that sample567

for the various conditional probability estimation techniques. The CRPS sample aver-568

ages for different ensemble members are compared pairwise with the true distribution569

CRPS sample averages to evaluate whether the predictions made by a given method are570

statistically distinguishable from the true distribution for a given sample size Nb. For571

instance, if among the 10,000 pairwise comparisons between the 100 ensemble members572

of the MVE network and 100 members of the true distribution CRPS sample averages573

fewer than 5% of the comparisons yield lower CRPS sample means for the MVE network,574

then it can be concluded that the probabilistic predictions made by the MVE network575

are inadequate for that sample size.576

Figures 6b, 6d, and 6f show the ensemble spread of the CRPS sample averages for577

each of the different methods for a variety of bootstrap sample sizes Nb. As the boot-578

strap sample size increases, the ensemble spread of the CRPS sample averages decreases579

for each of the different methods, revealing the minimum sample sizes needed to reject580

the probabilistic models. For instance, for Dataset 1 only a few hundred samples are needed581

to establish that the linear quantile regression poorly predicts probability distributions,582
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Figure 6. Continuous ranked probability score evaluated over the test samples of Synthetic
Dataset 1 (a, b), Dataset 2, (c, d) and Dataset 3 (e, f). (a, c, e) Histograms of the continuous
ranked probability score yielded by the predicted distributions of the RBLQNN (red), MVE net-
work (blue), and linear quantile regression (light green) evaluated over the 1,000 test samples.
The black dashed line shows the histogram of the CRPS attained by evaluating the ground truth
distribution against the observed samples. The continuous ranked probability scores have been
normalized relative to the climatological CRPS. Quantities in the legend indicates the sample-
average CRPS for each method. (b, d, f) Bootstrap-sampled CRPS sample averages. For a vari-
ety of quasi-logspaced sample sizes Nb ranging from 10 to 104 (multiples of 1, 2.5, 5 times powers
of 10), a bootstrapped sample of size Nb is sampled with replacement from the test set, and the
CRPS sample average is taken for each method of conditional probability estimation. This is
repeated 100 times to create a bootstrap ensemble. The thick notched lines show the ensemble-
mean sample-average CRPS for each sample size Nb, and the shaded region shows the ensemble
spread (± one standard deviation). The black dotted line indicates the sample size of the test
set (N = 1, 000). The fractions in the legend evaluate the probability that the sample-averaged
CRPS for each method will be lower than the CRPS yielded by the ground truth distribution
through pairwise comparisons of bootstrapped samples with Nb = N . For instance, a fraction of
p = 0.03 for the MVE network (panel d) indicates that only 3% of bootstrapped CRPS sample
averages for the MVE network are lower than the CRPS sample averages computed using the
ground truth distribution. This percentage is computed over the 10,000 pairwise comparisons be-
tween the 100 ensemble members for the MVE network CRPS sample averages and 100 ensemble
members for the ground truth distribution CRPS sample averages.

–18–



manuscript submitted to JGR: Machine Learning and Computation

whereas 1, 000 samples are needed to reject the probabilistic predictions made by the MVE583

network for Dataset 2. In contrast, the probability distributions predicted by the RBLQNN584

cannot be rejected up to samples of size 10, 000. The evaluations of the CRPS in Fig-585

ure 6 indicate that even in cases in which the predicted probability distributions are su-586

perior for a given method, substantial sample sizes may be needed to discern performance587

using sample-based metrics such as the CRPS. Care should therefore be taken when in-588

terpreting differences between sample-mean CRPS for different methods, especially for589

datasets with small sample sizes.590

4 Model performance on observational datasets591

We next evaluate the performance of the RBLQNN against the MVE network and592

linear quantile regression for the GSOD daily maximum temperature datasets as well593

as the TRMM precipitation dataset. For the GSOD datasets, we evaluate models trained594

separately at 1,501 different NOAA weather stations with 1,107–1,827 test samples en-595

compassing years 2016–2020. The TRMM dataset is a single dataset with 22, 028 test596

samples. As the ground truth probability distribution is unknown for these datasets, per-597

formance is evaluated using sample-based metrics such as the CRPS and PIT histogram598

deviation statistic.599

4.1 GSOD daily maximum temperatures600

Figure 7 compares the sample-averaged CRPS of the RBLQNN against the var-601

ious baselines. Histograms of the sample-averaged CRPS over all locations for each of602

the different methods are shown in Supporting Figure S6. To maintain consistency be-603

tween locations with different climatological variability, CRPS values are normalized by604

the CRPS obtained by applying the climatological quantiles of daily temperature max-605

imums at each location, so that a normalized sample-mean CRPS of 1 indicates prob-606

abilistic predictions no better than climatology. For all three conditional probability es-607

timation techniques, time-mean CRPS is lower than the climatological CRPS at 1,493608

out of 1,501 stations (99.4%). Moreover, the probabilistic models result in better CRPS609

than the MSE network at 1,492 of 1,401 locations (99.2%). Thus, all three conditional610

probability estimation techinques tend to provide improved information about the con-611

ditional distribution which is not permitted either by climatological or deterministic base-612

lines.613

The differences in CRPS between the RBLQNN and other conditional probabilis-614

tic baselines (Fig. 7c and 7d) are less pronounced than the difference in CRPS for the615

RBLQNN and climatological or MSE network predictions (Fig. 7a and 7b). Sample-mean616

CRPS for the RBLQNN is lower than the CRPS for the linear quantile regression at 1,477617

of 1,501 locations (94.8%). The locations in which the linear quantile regression outper-618

forms the RBLQNN could indicate overfitting on out-of-sample distributions, or random619

variations due to a lack of statistical significance arising from an insufficient sample size.620

Using pairwise comparisons of bootstrapped ensemble members to assess significance as621

in Section 3.4 shows that the sample-mean CRPS is statistically significantly lower for622

the RBLQNN than linear quantile regression at 950 of 1,501 stations (63.2%), indicat-623

ing that more samples may be needed to attain statistically significant lower CRPS with624

the RBLQNN for many locations.625

Sample-mean CRPS of the RBLQNN is lower than the MVE at 836 of 1,501 lo-626

cations (55.7%). While a slight majority of locations have lower CRPS with the RBLQNN627

than with the MVE network, few are statistically significant (19 of 1,501 stations, 1.3%).628

This can indicate that conditional probability distributions of TMAX are relatively well-629

described using Gaussian distributions, or that more samples are needed to differenti-630

ate the skill of the RBLQNN predictions from those of the MVE network.631
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Figure 7. Comparison of sample-average CRPS between RBLQNN predictions and baselines.
Maps of the difference in sample-mean CRPS between RBLQNN and (a) climatology, (b) MSE
network, (c) linear quantile regression, and (d) mean-variance estimation network. Values have
been normalized with respect to the climatological CRPS sample mean at each location. Circles
outlined in black indicate statistically signifcant differences, determined using the pairwise com-
parisons method of Section 3.4. Crosses indicate differences which are not statistically significant.
Note the order of magnitude difference in the colorbar extent for panels (a, b) vs (c, d).
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Despite the limitations of the small test sizes for individual stations, a few cohe-632

sive geographical regions where the RBLQNN has lower sample-average CRPS than the633

MVE network point to systematic causes for better predictions from the RBLQNN. The634

greatest decrease in CRPS from using the RBLQNN instead of the MVE network oc-635

curs primarily in the southeastern United States and Alaska. PIT deviation statistics636

(Fig. 8) indicate that predictions are relatively well-calibrated for the RBLQNN in these637

regions. For instance, in North and South America, 278 of 350 stations (79%) have bet-638

ter calibration statistics for the RBLQNN than the MVE network. Furthermore, while639

55 of 350 locations (15%) have PIT histograms fully consistent with the null hypothe-640

sis of uniformity for the RBLQNN, only 11 (3%) of the stations have PIT histograms641

consistent with uniformity using the MVE network. The relatively well-calibrated prob-642

abilistic predictions of the RBLQNN relative to the MVE network predictions in the south-643

eastern United States suggest that the RBLQNN is successfully estimating inherently644

non-Gaussian conditional distributions of TMAX. This region is consistent with the re-645

gions of high negentropy highlighting non-Gaussian marginal distributions in Figure 1c.646
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Figure 8. Differences in calibration statistics for RBLQNN predictions and those of (a) linear
quantile regression and (b) MVE networks. Calibration is measured using the deviation statistic
of the PIT histogram described in Section 2.3. Deviation statistics are normalized by the ex-
pected level of deviation for each location.

Regions in which the RBLQNN yields higher CRPS than the MVE network include647

Southeast Asia (particularly the Malay Peninsula and southeastern China), as well as648

Siberia and the Indian subcontinent. For these regions, the comparatively stronger per-649

formance of the MVE network indicates that the Gaussian approximation adequately650

represents the underlying conditional distributions. The validity of the Gaussian approx-651

imation may be related to the variability in TMAX that is attributable to functional de-652

pendence on the regressors. Supporting Figure S7 shows the distribution of differences653
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in CRPS between the RBLQNN and MVE network as a function of the MSE network654

R2. Since the MVE network and RBLQNN share the same architecture as the MSE net-655

work, the R2 yields an estimate about the proportion of variability which is explained656

by the nonlinear functional dependence of TMAX on the model inputs as opposed to the657

conditional distribution itself. Supporting Figure S7c suggests that the Gaussian approx-658

imation is the most valid when a high proportion of the variance is explained by the de-659

terministic functional (R2 ≈ 1) or when a negligible proportion of the variance is ex-660

plained by the deterministic component (R2 ≈ 0). In regions such as the Malay penin-661

sula, R2 of the MSE network is low, possibly due to the influence of the monsoon sys-662

tem and effects of moisture variations on the temperature profile as well as complex orog-663

raphy. In such regions, the inputs to the RBLQNN may be rather uninformative, result-664

ing in challenges with optimization of individual quantiles in the RBLQNN. Conversely,665

in regions such as southeastern China where R2 is high, much of the variability in TMAX666

is explained by the deterministic component, and the remaining variability may resem-667

ble Gaussian noise. The RBLQNN tends to outperform that of the MVE networks in668

regions of intermediate R2, in which the inputs are informative yet much of the variance669

is not fully explained by the deterministic functional. For instance, at stations where the670

MSE network R2 is between 0.3 and 0.7, 73.1% of stations have lower time-averaged CRPS671

with the RBLQNN than with the MVE network.672

The timeseries of predicted conditional probability distributions shown in Figure 9673

help illustrate the situations in which the RBLQNN performs well. Figures 9a and 9b674

show two stations where the RBLQNN has greater average CRPS than the MVE net-675

work. At Bangkok (Fig. 9a), temporal changes in the distribution are small over the course676

of the year, with the observed sea level pressure and geopotential heights providing min-677

imal information about TMAX. On the other hand, at Fuzhou, (Fig. 9a), nearly all of678

the variance in temperature is explained by the deterministic component. In both of these679

cases, the principle of maximum entropy validates the Gaussian approximation, as there680

is a lack of constraining information about the conditional distributions of TMAX.681

Figures 9c and 9d show two examples where the RBLQNN does outperform the682

MVE network, and the differences are statistically significant. The predicted probabil-683

ity distributions respond to seasonality, both through the change in mean predicted tem-684

perature throughout the year as well as changes in variability between the winter and685

summer months. However, the distributions predicted by the quantile neural network686

are negatively skewed, allowing the RBLQNN to permit cold extremes during the win-687

ter while maintaining sharp predicted distributions.688

4.2 TRMM precipitation689

While the conditional probability estimates of the RBLQNNs trained to predict690

temperatures in Section 4.1 mostly outperform those of linear quantile regression, dif-691

ferences between the RBLQNN and Gaussian maximum likelihood networks are less pro-692

nounced. This may be because the probability estimates of TMAX conditioned on sea693

level pressure and geopotential heights are sufficiently approximated by normal distri-694

butions at most stations, or because the test size is insufficient to assess the probabilis-695

tic predictions. In this section, we focus on a single dataset which contains significantly696

more samples (20,028 test samples as opposed to at most 1,827), and for which the Gaus-697

sian approximation is clearly less valid.698

The CRPS is shown for the different conditional probability estimation techniques699

for the precipitation dataset in Figure 10a. Here, it is clear that the CRPS is substan-700

tially better for the RBLQNN than all of the other baselines. Probabilistic predictions701

are the worst for the Gaussian neural network, and both the Gaussian neural network702

and linear quantile regression produce probabilistic estimates with even worse scores than703

an MSE-trained deterministic network. Computing the CRPS using bootstrapped sam-704
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Figure 9. Timeseries of predicted conditional probability distributions for GSOD TMAX for
year 2020 in (a) Bangkok, (b) Fuzhou, (c) Tampa, and (d) Sacramento. Colored lines indicate the
predicted quantiles, with different panels for RBLQNN (top), linear quantile regression (middle)
and mean-variance estimation networks (bottom). Black crosses indicate observed TMAX. The
black line indicates predictions made by the MSE network, with R2 given in the legend.

ples (Figure 10b) shows that for bootstrapped sample sizes of 500 samples or more, the705

RBLQNN consistently results in better sample-averaged CRPS than the other baselines.706

Thus, the RBLQNN produces significantly better probabilistic predictions on the pre-707

cipitation dataset than the Gaussian maximum likelihood network or the linear quan-708

tile regression method. This indicates that both nonlinear functional dependence and709

non-Gaussianity are essential properties of the conditional distributions of precipitation.710

5 Discussion711

The chaotic and nonlinear dynamics of the Earth system implies that geophysical712

variables are prone to fluctuations and uncertainties, posing challenges to predicting geo-713

physical variability with complete certainty. Thus, managing weather and climate risk714

requires quantifying and constraining estimates for geophysical variability which depends715
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Figure 10. CRPS of different conditional probability estimation techniques evaluated on the
TRMM precipitation dataset. (a) Histograms of the CRPS evaluated over all test samples for the
RBLQNN (red), Gaussian maximum likelihood network (blue), linear quantile regression (light
green) and MSE network (black dotted lines). Values in the legend indicate sample-averaged
values. (b) As in Figure 6b, 6d, and 6f but for the TRMM dataset.

on fluctuating observable conditions. In this paper, we propose an approach for char-716

acterizing the uncertainties of geophysical quantities such as daily maximum tempera-717

tures or precipitation amounts based on other measurable conditions using quantile re-718

gression neural networks. To address some typical issues with quantile neural networks,719

our implementation—termed the “ReLU bias loss quantile neural network” (RBLQNN)—720

employs two novel and explicit modifications to the loss function to predict quantiles with721

equal consideration and to mitigate the possibility of predicting degenerate probability722

distributions. Using a suite of different datasets—synthetic distributions, in-situ daily723

temperature maxima observations from weather stations, and altimetry-observed pre-724

cipitation data—the RBLQNN is compared against mean-variance estimation networks725

(which presuppose that conditional distributions are Gaussian) and linear quantile re-726

gression (where linear conditional dependence relationships are assumed). The RBLQNN727

is versatile, issuing conditional probability estimates which faithfully describe the tar-728

get variable in the broad class of datasets considered.729

We evaluate the RBLQNN on three synthetic datasets in which the true distribu-730

tion is known a priori, demonstrating several minor advantages over other approaches.731

The RBLQNN performs well in situations where the MVE network or LQR are deficient,732

such as when conditional probability distributions are non-Gaussian or when the response733

variable depends nonlinearly on the regressors. Evaluations of the RBLQNN against other734

quantile neural network techniques demonstrates advantages of our approach: conver-735

gence for our method appears to be more stable than the cumulative increment approach736

of Padilla et al. (2022), whereas the ReLU bias loss reduces degenerate probability dis-737

tributions due to quantile crossings without significantly degrading performance. Eval-738

uations of the convergence of the RBLQNN over a large range of hyperparameters sug-739

gests that the RBLQNN trains stably over a broad hyperparameter space relative to the740

MVE networks. Of course, a caveat to these results is that the range of hyperparame-741

ters tested could be extended (e.g., more layers), and training may be sensitive to other742

hyperparameters not tested (such as activation function or optimizer).743

Comparing the CRPS of the RBLQNN predictions against linear quantile regres-744

sion and the MVE network predictions illustrates the relative importance of capturing745

nonlinearities or non-Gaussian distributions in the representation of uncertainties. For746
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the GSOD daily temperature maxima dataset, most stations have lower sample-averaged747

CRPS when using the RBLQNN than when using linear quantile regression, and com-748

parisons between bootstrapped CRPS averages indicate that at many locations these dif-749

ferences are statistically significant. The relative performance of the RBLQNN over lin-750

ear quantile regression implies that capturing nonlinear functional dependencies between751

temperature and local pressure or geopotential heights is paramount to constraining tem-752

perature uncertainties. Differences in CRPS between the RBLQNN and the MVE net-753

work are smaller and not statistically significant, indicating that allowing for non-Gaussian754

conditional probabilities may be of secondary importance.755

In the context of daily temperature maxima, the relative validity of the Gaussian756

approximation in many situations may be related to the principle of maximum entropy757

(Sura & Hannachi, 2015; Jaynes, 1957): namely, that the distribution which maximizes758

the information entropy—i.e., the least informative distribution—under a set of given759

constraints is that which is most probable. Under the very limited constraints of given760

mean and variance, the Gaussian distribution maximizes the differential entropy, and thus761

without further information constraints the Gaussian approximation is valid. It was noted762

that the CRPS for the RBLQNN often was higher than the MVE networks when much763

of the variance was explained by the deterministic component (MSE network R2 ≈ 1)764

or when very little of the variance was explained by the deterministic component (R2 ≈765

0). In such cases, the Gaussian approximation may be relatively valid because the in-766

puts are uninformative about the conditional distribution, and thus the distribution is767

relatively unconstrained. On the other hand, in regimes where the inputs are informa-768

tive to predicting temperature, but much of the variance is left unexplained by the de-769

terministic functional, additional information constraints may apply and the maximal770

entropy distribution may be more accurately described by non-Gaussian probability dis-771

tributions.772

While the RBLQNN does not have statistically significantly better CRPS than the773

MVE networks on the GSOD dataset, it is possible that the RBLQNN does predict con-774

ditional distributions of temperature more skillfully, yet that the sample size is insuffi-775

cient to discern this skill. The synthetic datasets in Section 3 demonstrate that even if776

the RBLQNN clearly predicts the true distribution with greater accuracy (e.g. Fig. 3)777

a large number of samples may be needed to distinguish skill using sample based met-778

rics like the CRPS (e.g. Fig. 6). Station temperature observations with significantly more779

samples may more clearly reveal the skill of the RBLQNN, though it is difficult a pri-780

ori to estimate how many samples are needed for non-Gaussian statistics to emerge.781

In light of the meager sample sizes for the GSOD temperature datasets and chal-782

lenges identifying non-Gaussian conditional distributions, we also evaluated performance783

of the RBLQNN on the TRMM precipitation dataset, in which the sample size was over784

ten times as large and the Gaussian approximation is clearly invalid. In this case, the785

performance of the RBLQNN clearly outperforms the LQR and MVE network baselines.786

In principle, maximum-likelihood losses of other probability distributions can be used787

to predict parameters of different families of distributions. Since precipitation can take788

only nonnegative values, precipitation may be better modeled using distributions sup-789

ported on the semi-infinite line, such as the exponential distribution or the Gamma dis-790

tribution. Nevertheless, the RBLQNN is a simple approach to estimate conditional prob-791

abilities which does not require any assumptions about the parametric family of the un-792

derlying distribution.793

Open Research Section794

The NOAA Global Surface Summary of the Day dataset is available at https://795

www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:796

C00516 (NOAA National Centers of Environmental Information, 1999). The Tropical797

–25–



manuscript submitted to JGR: Machine Learning and Computation

Rainfall Measuring Mission dataset is available at https://gpm.nasa.gov/data/directory798

(Kummerow et al., 2000). The ERA5 reanalysis dataset is available at https://github799

.com/google-research/arco-era5 (Carver & Merose, 2023), courtesy of the Coper-800

nicus Climate Changes Service (C3S) Data Store (Hersbach, 2000). The code used for801

data processing, model training, analysis, and visualization in this study and files for repli-802

cating the software environment are provided under the MIT license at https://github803

.com/andrewbrettin/quantile ml (Brettin, XXXX).804
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Figure S1. Pinball function used as a quantile loss (Eq. 4).
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Figure S3. Timeseries and histograms of samples generated for Synthetic Dataset 3. (a)

Timeseries of x (blue) and y (orange) components of the potential system (Eq. 19) for the

for times 0 ≤ t ≤ 50. (b) Joint histogram of samples of (x, y) for times 0 ≤ t ≤ 10, 000.

(c) Theoretical stationary distribution given by the Fokker-Planck equation (the Boltzmann

distribution e−V (x,y)) for the potential given in Eq. 20. (d) Difference between the empirical

histogram (c) and true density (d), f̃ − f . (e) Relative difference between the histogram and

true density (f̃ − f)/f .
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Figure S4. Ensemble mean position vector magnitude ∥(x, y)∥2 over 50 different trajectories

for the first 100 seconds of simulation time. Shading indicates the ensemble spread (±1σ).
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Figure S5. Quantile errors ŷq − yq as a function of x.
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Figure S6. Histogram of sample-mean CRPS over all 1,501 GSOD stations for quantile neural

network (red), Gaussian maximum likelihood network (blue), linear quantile regression (green),

and MSE network (black). Values have been standardized with respect to the climatological

CRPS at each location.
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Figure S7. Relationship between CRPS gain from Gaussian maximum likelihood network to

quantile neural network and coefficient of determination for MSE network. (a) Sample-average

CRPS difference between quantile neural network and Gaussian maximum likelihood network,

as in Figure 7d. (b) Coefficient of determination (R2) for MSE network. (c) Boxplots of CRPS

difference conditioned on corresponding station MSE network R2 (binned into tenths), with strip

plots (black dots) indicating individual stations. Blue line indicates the proportion of stations

with lower CRPS for the quantile neural network.
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Table S1. Hyperparameter configurations for different datasets.

Hyperparameter Synthetic datasets GSOD dataset TRMM dataset
Hidden layers 3 3 3
Neurons per hidden layer 128 128 128
Bias loss weight η (QNN) 1.0 0.01 0.01
Batch size 256 256 256
Optimizer Adam Adam Adam
Learning rate 10−3 10−5 10−5

L2 regularization 10−5 10−2 10−2

Maximum epochs 1,000 1,000 1,000
Early stopping epochs 25 300 None
Warmup epochs 100 100 100
Prescribed variance 0.1 0.1 0.1
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Table S2. Number of test samples (out of 1,000) resulting in quantile crossings for each

quantile neural network technique, averaged over all 100 ensemble members.

Dataset Quantile NN Unweighted No bias Cumulative inc.
1 2.1 6.06 5.5 0.0
2 26.5 266.2 258.8 0.0
3 0.0 0.50 1.1 0.0

Table S3. Proportion of ensemble members resulting in no quantile crossings over all samples.

Dataset Quantile NN Unweighted No bias Cumulative inc.
1 0.38 0.02 0.05 1.0
2 0.48 0.00 0.00 1.0
3 0.98 0.79 0.76 1.0
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Table S4. Hyperparameters used for training stability analysis.

Hyperparameter Values considered
Learning rate 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

L2 weight decay 0 10−5 10−3

Number of layers 2 3
Neurons per layer 64 128 256
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