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Estimation of temperature and precipitation
uncertainties using quantile neural networks
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Key Points:

« We propose and evaluate a quantile neural network approach for constraining un-
certainties on a variety of synthetic and observational datasets

¢ The quantile neural network’s ease of implementation and generality reveal its suit-
ability for quantifying uncertainties

« We compare the QNN against linear and Gaussian baselines, finding nonlinear de-
pendencies for temperature and nonlinear and non-Gaussian dependencies for pre-
cipitation
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Abstract

Given the challenges of limited predictability and risks that extreme events pose, impos-
ing quantitative constraints on the variability of geophysical fields under observable but
fluctuating conditions is necessary for assessing climate hazards. Here, we propose a quan-
tile regression neural network framework for estimating uncertainties with two novel yet
tractable modifications to the loss function to enforce uniform quantile accuracy and re-
duce the occurence of degenerate predicted probability distributions. We evaluate the
quantile neural network against other conditional probabilistic baselines on a suite of datasets:
synthetic datasets, observed in-situ daily temperature maxima from 1,501 NOAA Global
Surface Summary of the Day (GSOD) weather stations, and altimetry-observed precip-
itation from Tropical Rainfall Measuring Mission (TRMM). On synthetic datasets, the
proposed quantile regression neural network accurately predicts conditional distributions
where more restrictive methods like linear quantile regression or mean-variance estima-
tion neural networks are deficient, mitigates shortcomings of some other quantile neu-

ral network approaches, and converges stably under a range of different hyperparame-
ters. Applying the quantile neural network to predict GSOD daily temperature maxima
shows that temperature distributions may be relatively well-described as Gaussian, though
nonlinear dependencies on the station sea level pressure and geopotential heights are likely
important. On precipitation statistics, the quantile regression neural network strongly
outperforms linear quantile regression and the Gaussian maximum likelihood network
baselines, indicating it is able to capture the highly nonlinear and non-Gaussian condi-
tional distributions of precipitation. The performance of the quantile regression neural
network on a variety of datasets indicates that it is a simple, flexible, and general ap-
proach that could be used to constrain aleatoric uncertainties for a myriad of geophys-
ical quantities which may have nonlinear or non-Gaussian conditional dependencies.

Plain Language Summary

The climate system is highly chaotic and unpredictable, often yielding extremes
and risks that must be quantified. In light of these uncertainties, we propose a data-driven
probabilistic technique, a type of “quantile neural network,” for quantifying uncertain-
ties which requires few assumptions and has a straightforard implementation. Using a
synthetic dataset, we establish the advantages of this quantile neural network against
baselines which require stronger assumptions, such as one that assumes linear relation-
ships between inputs and outputs and one that assumes that uncertainties are normally-
distributed. We then apply this technique to weather station temperature data and satel-
lite observations of precipitation, finding that daily maximum temperatures are well-described
by nonlinear relationships with normally-distributed uncertainties, whereas precipita-
tion depends significantly nonlinearly on the inputs to the model and exhibits non-normal
statistics. This work shows how quantile neural networks can be easily implemented to
gain a more accurate representation of uncertainties in the geosciences.

1 Introduction

The climate system is governed by complex, highly nonlinear interactions between
the atmosphere, ocean, land and cryosphere (Gupta et al., 2022), and the chaotic dy-
namics that result can be difficult to predict with certainty given limited information about
the system state (Vitart et al., 2017). Interactions between processes occur over a range
of temporal and spatial scales, producing variability and extremes, often with adverse
impacts to human populations (Newman & Noy, 2023). Given the lack of predictabil-
ity in the climate system, accurately quantifying the uncertainty of geophysical fields un-
der changing measurable conditions is crucial due to the hazards that can result from
its chaotic dynamics.
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Often, uncertainties in the atmosphere-ocean system are represented using Gaus-
sian statistics. Gaussian assumptions underlie climate projections (Kopp et al., 2014; IPCC,
2021), stochastic parameterization of sub-gridscale processes (Franzke et al., 2015), mea-
surement approximations in data assimilation models and reanalysis products (Bocquet
et al., 2010; Hersbach et al., 2020), linear inverse models (Penland, 1989; Penland & Sardesh-
mukh, 1995), in-situ and altimetric observational product quality control and more. The
Gaussian distribution’s relevance to characterizing a wide range of uncertainties in the
Earth system can be attributed to a few theoretical considerations (Sura & Hannachi,
2015). Firstly, the normal distribution plays a crucial role in the Central Limit Theo-
rem, which states that the sample mean of independently and identically distributed ran-
dom variables approaches a normal distribution as the sample size increases. The Cen-
tral Limit Theorem implies that aggregation operations (e.g., the averaging involved in
the measurement, simulation, and forecasting of geophysical quantitites) tend to produce
normally distributed quantities (DelSole & Tippett, 2022). Another reason that the Gaus-
sian distribution arises is due to its unique role as the maximum entropy distribution for
a given mean and variance for quantities with unbounded support (Sura & Hannachi,
2015; Majda & Wang, 2006). The principle of maximum entropy, first proposed by Jaynes
(1957), is that the maximum entropy distribution (i.e. the least informative one under
given constraints) is the most probable distribution. Thus, without further information
constraining the form of the uncertainties, the Gaussian is the “best guess” of the un-
derlying uncertainty.

One approach to quantifying Gaussian uncertainties has gained significant traction
for geoscience applications in recent years is mean-variance estimation (MVE) neural net-
works. Proposed by Nix and Weigend (1994), MVE networks are data-driven models op-
timized over the Gaussian negative log-likelihood to yield not only a point estimate, but
also a standard deviation to quantify the level of uncertainty given the inputs. MVE net-
works have been used for developing stochastic parameterizations (Guillaumin & Zanna,
2021; Perezhogin et al., 2023; Wu et al., 2025), identifying drivers of predictability (Gordon

& Barnes, 2022), identifying exceedance times of critical global warming thresholds (Diffenbaugh

& Barnes, 2023) and more (Haynes et al., 2023; Barnes & Barnes, 2021; Schreck et al.,
2024).

Despite the proliferation of machine learning methods that assume Gaussianity, how-
ever, many geophysical quantities are non-Gaussian. Observations of surface air temper-
ature exhibit significantly non-Gaussian characteristics (Fig. 1; Proistosescu et al. (2016);
Catalano et al. (2021); Cavanaugh and Shen (2014); McKinnon et al. (2016)), with nu-
merous physical causes (such as tracer advection-diffusion processes and jet dynamics)
supported by numerical simulations (Linz et al., 2018; Garfinkel & Harnik, 2017; Has-
sanzadeh & Kuang, 2015) as well as theoretical arguments (Sura & Hannachi, 2015; Kimura
& Kraichnan, 1993; McLaughlin & Majda, 1996; Hu & Pierrehumbert, 2002). Precip-
itation statistics are highly non-Gaussian, and modelling precipitation statistics remains
an active area of research (Ashkenazy & Smith, 2024; Li et al., 2023; Scheuerer et al.,
2020; Beck et al., 2020; Martinez-Villalobos & Neelin, 2019). Deviations from Gaussian-
ity have implications for the quantification of extremes (Bjarke et al., 2023; Loikith &
Neelin, 2019), as well as the changes in likelihood of tail events under changing temper-
atures (Loikith & Neelin, 2015).

Studies such as Barnes et al. (2023) have relaxed the Gaussian assumption of MVE
networks by training neural networks to estimate parameters of probability distributions
which include skewness and kurtosis parameters (e.g., the “SHASH” distribution; Jones
and Pewsey (2019)). Such approaches generalize the types of aleatoric uncertainties that
can be estimated; nevertheless, they require parametric assumptions about the under-
lying uncertainties which may not necessarily hold. For instance, the SHASH distribu-
tion may inadequately represent precipitation statistics, in particular due to the incom-
patability of nonnegative precipitation measurements with the SHASH’s unbounded sup-
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Figure 1. Non-Gaussianity of daily maximum surface air temperature (TMAX) seasonal
anomalies, as measured by the sample’s (a) skewness, (b) kurtosis, and (c) Kullback-Leibler di-
vergence between the sample and a Gaussian estimated with the approach of Hyvérinen and Oja
(2000) using contrast function G(u) = logcoshu (higher values indicate greater deviations from

Gaussianity).

port. Alternatively, quantile regression techniques offer ways to estimate the response
distribution without parametric assumptions about the distribution of uncertainties by
using the optimization formulation for the quantile (Koenker & Bassett Jr, 1978; Koenker,
2005). Linear quantile regression has been used for identifying temporal changes in dis-
tributions of surface air temperature observations (McKinnon et al., 2016) and for sea
surface heights simulated by climate models (Falasca et al., 2023). The quantile regres-
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sion loss has also been used to train regression neural networks, starting with White (1992)
and Taylor (2000). Such quantile regression neural networks give an appealing means

of estimating uncertainties, as they allow for complete estimation of nonlinear functional
dependencies and non-Gaussian statistics. Several studies have used the quantile regres-
sion loss for neural networks to predict conditional probabilities, including for assessing
financial risk (Chronopoulos et al., 2024; Keilbar & Wang, 2022), energy demands (W. Zhang
et al., 2019; Tambwekar et al., 2021; Belloni et al., 2019), and healthcare outcomes risks
(X. Zhang et al., 2025; Corsaro et al., 2024). Nevertheless, the use of quantile regression
neural networks for geoscience applications seems to be limited to a few studies (Cannon,
2018; Haynes et al., 2023; Bremnes, 2020; Papacharalampous et al., 2025). Technical chal-
lenges, such as sample size limitations or complications associated with enforcing quan-
tile monotonicity (Chernozhukov et al., 2010; Cannon, 2018; Padilla et al., 2022) may
inhibit broader usage of quantile regression neural networks in the geosciences.

In this paper, we propose a flexible and simple quantile regression neural network
for estimating uncertainties. Our implementation of the quantile regression neural net-
work uses the Rectified Linear Unit (ReLU) as a loss function to encourage quantile mono-
tonicity during training, and we refer to it as the “ReLU bias loss quantile neural net-
work” (RBLQNN). We evaluate the RBLQNN against baselines which assume Gaussian
conditional distributions or linear dependence to assess the relative importance of lin-
earity or Gaussianity assumptions in a variety of synthetic and observational datasets.
After establishing the advantages of the RBLQNN on synthetic datasets, we assess the
Gaussianity and linearity assumptions of two observational datasets: NOAA Global Sur-
face Summary of the Day (GSOD) daily temperature measurements at 1,501 weather
stations, and Tropical Rainfall Measuring Mission (TRMM) precipitation altimeter ob-
servations.

In Section 2, we formulate our approach to conditional probability estimation, and
describe the RBLQNN, baselines, datasets, and metrics. Then, in Section 3 we evalu-
ate the performance of the RBLQNN, demonstrating its advantages over the baselines
and other quantile regression neural network techniques. In Section 4, we examine the
importance of Gaussianity and linearity assumptions in the GSOD and TRMM datasets.
We end with a discussion providing some perspectives on our results and describing caveats
of the RBLQNN in Section 5.

2 Methods
2.1 Conditional probability estimation
2.1.1 Formulation and optimization setup

In this framework, geophysical target variables Y such as surface air temperature
or precipitation are considered a function r of random variables

Y =r(X,¥), (1)

where the X = (X3,...,X,) represent observable random variates and ¥ represents
the remaining aleatoric uncertainty. We seek to represent the distribution of the predic-
tion variables conditioned on observed quantities Y|X = x.

We express probabilities in terms of quantiles. For a continuous cumulative distri-
bution function (CDF) F' : R — (0,1), the g-quantile y, is defined by y, = F~'(q).
Because the CDF is unique for a given distribution, a probability distribution is fully char-
acterized by the set of quantiles for ¢ € (0,1). Thus, the conditional distribution of ¥'|X
can then be formulated in terms of its quantiles (Y|X), by functions f(@ : RP — R
as

yg = (YIX =%)g = f9(x). (2)
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Identifying the conditional distribution amounts to determining f(9 for ¢ € (0,1).

The key insight behind quantile regression techniques is that the g-quantile y, sat-
isfies the following optimization problem (Koenker & Bassett Jr, 1978):

%zF*@wﬁ»%zngEmw>mwwmmn/%< W) dF(y),  (3)

u

where the “pinball function” p,(t) is defined by

pq(t) = qtl>0y — (1 — @)tlpcoy (4)

The pinball function is plotted for various values of ¢ in Supporting Figure S1. Intuitively,
the pinball function asymmetrically penalizes data above and below a given value to ob-
tain estimates for a specified quantile. For instance, when predicting a high quantile like
g = 0.9, data y is heavily penalized for exceeding the minimization argument u in (3),

but lightly penalized for subordinating u. This pushes the optimal value of u towards

the higher end of the data. When ¢ = 0.5, the pinball function is symmetric and re-
duces to the absolute value of its argument (scaled by a factor of 0.5).

This optimization formulation (3) is analogous to how the mean of a distribution
is the argument minimizer of the variance functional:

u

u=~EY <= pu= arglrtnin E[(Y — u)?] = argmin /R(y —u)? dF(y). (5)

The optimization formulation (3) provides an avenue for determining conditional
distributions using regression techniques. In a general regression problem, we seek to es-
timate some property of the conditional distribution of Y'|X by a functional f(X). This
minimization formulation allows this functional to be empirically optimized over a class
of candidate functions {fp}oco for a given dataset {(x;,y;)}?_; sampled from the joint
distribution (X,Y’). For example, in least-squares regression, the optimization formu-
lation for the mean in (5) is used to empirically estimate the conditional mean:

EY[X =x] = f(x) ~ fo(z), (6)

where

fo = argmin {11L Z (yi — fg(Xi))2} . (7)

fo i=1

In a similar vein, the optimization formulation for the quantiles (3) can be used to es-
timate the conditional quantile of the distribution:

= (Y|X =x), = fP(x) ~ 3" (x), (8)
where

fo(q) = argmln { Z pq (Vi — fo Xl))} . (9)

2.1.2 ReLU bias loss quantile regression neural network (RBLQNN)

The RBLQNN is a multilayer perceptron fy : RP — R™ that outputs predicted
quantiles for a discrete set of probability levels 0 < ¢; < -+ < g < 1:

(Dar> - 9g,n) = Jo(X). (10)

Quantiles at intermediate probability levels ¢ # ¢; can then be approximated using in-
terpolation techniques. In this study, we evaluate predictions of the quantiles using m =
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19 equispaced probability levels with increments of Ag = 0.05. This is a subjective choice

loosely informed by statistical conventions (Fisher, 1970; Xu et al., 2017).

Since the neural network predicts multiple quantiles simultaneously, the loss func-

tion optimizes predictions for all quantiles:

m
Lo i) = > X, (Wi — Tlg;.)-
j=1

We propose to combine two simple additions for mitigating issues that may arise

when using this loss for training:

1. Quantile counterbalancing. At the quantile y, = F~'(g), the expected value of

(11)

the quantile loss E [pq (Y — yq)] is different for different probability levels g. In or-

der to ensure that each quantile is optimized evenly, the loss weights A; in (11)

should be chosen to be inversely proportional to the expectation \; = E[p(Y —

This expectation reduces to

E [Pq(y - yq)] =q(EY —E[Y]Y < yq]) .

yq)]_l-

(12)

While the true expectation depends on the distribution of Y (which is unknown),
Supporting Figure S2 shows that this expectation is not extremely sensitive to the
type of distribution. For the purposes of developing bona fide weights, we assume
a standard-normal distribution so that A\; = exp (%), where @ is the CDF
of the standard normal distribution.

. ReL U bias loss. Because the CDF must be monotonic, probability distributions

become degenerate when predicted quantiles cross. That is, for g1 < -+ < @,
we must have that g4, <--- < g,,,. Various methods for avoiding quantile cross-
ings have been proposed, such as monotone rearrangement of predicted quantiles
(Chernozhukov et al., 2010), applying monotonicity constraints to function inputs
(Cannon, 2018) or predicting nonnegative increments for successive quantile val-
ues (Padilla et al., 2022). These methods range in complexity; here, we apply a
simple bias loss to discourage quantile crossings during training while retaining
the transparent output structure of the quantile regression neural network:

m—1
Lrevv(Gg) = Y ReLU(Jg, i — gy 1,05 (13)
j=1
where the Rectified Linear Unit function is given by ReLU(z) = 1 {;>0). If any
of the quantiles is greater than the succeeding quantile, the ReLU loss is positive.
If all quantiles are ordered, then the ReLLU penalty is 0.

The net loss function that is used for training the RBLQNN is given by

L(Wi,Gq,i) = LQWi> Ug,i) + NLReLU (T, (14)

where n > 0 is a hyperparameter.

2.1.3 Baselines

The predicted distributions made by the quantile neural network are compared against

two baselines: linear quantile regression (LQR) and mean-variance estimation (MVE)

neural networks. Linear quantile regression allows for arbitrary conditional probability

estimates, but the functional dependence on the regressors is assumed to be linear. On
the other hand, mean-variance estimation networks allow for nonlinear dependencies, but

restrict conditional probabilities to be Gaussian. Together, these baselines help assess

the relative importance of nonlinearities and non-Gaussianity in the predicted conditional

distributions.
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2.1.3.1 Linear quantile regression (LQR) For linear quantile regression, it is as-
sumed that the quantiles of the regressand depend linearly on the regressors:

yg = (YIX =x)q = bo(q) + Bla)"x. (15)

Accordingly, the family of functions minimized using (7) are limited to linear functions:

n

1
Bo(q), B1(q) = argmin — ¥ pg(yi — Jq,i), (16)
ﬁo(q),ﬁl(q)n; e

where §,.; = Bo(q) + B1(q)x;.

For the linear quantile regression model, predictions are made for each quantile q1, ..., gn
simultaneously, so that weights are shared for different quantile predictions, which has
been shown to improve predictions (Zou & Yuan, 2008; Jiang et al., 2012).

2.1.8.2 Mean-variance estimation (MVE) neural networks As an alternative to
linear quantile regression, we explore predictions made by mean-variance estimation (MVE)
networks (Nix & Weigend, 1994). MVE networks are artificial neural networks that yield
predictions of conditional probability densities by outputting the parameters of a nor-
mal distribution ; = f(z;),6? = 6%(x;). (In practice, because the predicted stan-
dard deviation should be positive, the log-variance log(6?) is typically used as an out-
put of the neural network and then exponentiated to yield positive values of 52.) Weights
and biases in the neural network are updated by optimizing the log-likelihood of the tar-
get data under the predicted parameters:

. . . s 1 . yi — i\
£ (v ), (@) = ~Togpluilie 0%) = 5 [mg(a?) H(B5E) [+e an
where p(y|u,0?) = 21W exp [% (%)2} is the probability density function of a nor-
mal distribution with parameters p and 02, and C = %log 27 is an immaterial opti-

mization constant. Quantile predictions are then given by §, = fi; + 597 1(q).

2.1.8.8 Alternative quantile regression neural network approaches We also as-
sess the performance of our quantile regression neural network trained on (14) against
various other quantile regression neural network techniques:

1. Unweighted network. This quantile neural network is trained using (11) with uni-
form weighting A\; = --- = A, = 1, and is termed the “composite” network in
Xu et al. (2017).

2. No-bias network. This network uses the normal-distribution inverse-expectation
weighting scheme \; = exp (%) However, the bias loss of (13) is not ap-
plied.

3. Cumulative increment. Proposed in Padilla et al. (2022), this network enforces strict
monotonicity by predicting positive increments between successive quantiles. Specif-
ically, the network outputs values hq(x), ..., h,,(x) such that

) h(x) v="1,
v {hl(x) + Yy log(L+€M0) (j=2,....m). "

Since log (1 4+ €*) > 0, monotonicity of predicted quantiles is strictly enforced.
This network can then be trained using the loss function in (11) using equal weights
A==\, =1.

2.1.8.4 Mean squared error (MSE) neural networks In addition to the proba-
bilistic baselines, a neural network trained using the Mean Squared Error (MSE) to pre-
dict the target variable is also used as a deterministic baseline.
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2.2 Datasets

We evaluate the methods for conditional probability estimation on a suite of dif-
ferent datasets: 1) synthetic datasets, 2) weather station daily temperature maxima, and
3) altimetry-observed precipitation.

2.2.1 Synthetic datasets

We first demonstrate the performance of the different methods on three different
synthetic datasets:

* Dataset 1. Y = X? + U, where X ~ N(0,1) is drawn from a standard normal
and V¥ is drawn from a Gumbel distribution. The Gumbel distribution, which is
used in extreme value theory, was selected to represent the aleatoric uncertainty
due to its non-Gaussianity and support on the entire real line.

» Dataset 2. Y = Beta(a, 8), where « = X+0.2, $ =1.2—X, and X ~ U(0,1) is
uniform distributed on [0, 1]. This dataset was formulated to investigate the im-
pacts of heteroscedasticity on the conditional probability estimation techniques.
The Beta distribution has bounded support, providing an interesting test case for
the RBLQNN and other baselines.

e Dataset 3. Often, uncertainties of interest arise from quantities generated as a re-
sult of a time-varying dynamic process. Thus, we consider a stationary distribu-
tion generated from a two-dimensional stochastic gradient system of damped Langevin
dynamics (Schlick, 2010) of = (z,y),

dz _ —VV(x) +¢&, (19)
dt

where V() is a potential function and £ ~ N(0,1) is white noise. The station-

ary joint distribution f yielded by the dynamics is governed by the steady-state
Fokker-Planck equation, with solution given by the Boltzmann distribution f(x,y)
e~V(@Y) (Landau & Lifshitz, 2013). The conditional distributions can then be com-
puted using numerical integration. We consider a potential of the form

Viz,y) =[] (@ = 2:)* + (v — v:)?) (20)

i=1

which contains local minima at the points (z;,y;). For this dataset, we set (z1,y1) =
(=%,-12), (z2,92) = (1,-1), and (x3,y3) = (1, 3), which yields a unimodal con-
ditional distribution at *+ = x; and a bimodal conditional distribution at x =

r9 = x3. We simulate the trajectories from the origin using an Euler-Maruyama
solver with timesteps At = 10~* up to a final time of 7" = 50,000. The joint
distribution and corresponding histogram with 10,000 bins (100 equispaced bins

in z and y) are shown in Supporting Figure S3. Histogram frequencies are within
2% of the true density for all bins, indicating that the samples are consistent with
the theoretical distribution yielded by the Fokker-Planck equation. In order to ver-
ify that samples are drawn from the stationary distribution, Supporting Figure S4
shows the ensemble mean and spread of the magnitude ||(z,y)||2 to show that ini-
tial condition information is lost after a few seconds of simulation time. The train-
ing, validation, and testing sets are randomly sampled from the values generated
by this timeseries.

Figures 2a, 2e, and 2i show the quantiles of the conditional distribution of Y|X and
samples drawn from the joint distribution (X,Y") for the three synthetic datasets. For
each dataset, we examine performance using training sets of n = 10,000 samples, val-
idating training on a dataset of 1,000 samples and measuring performance on a test dataset
of 1,000 samples. The input and target samples of Datasets 1 and 3 are standardized
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using the training dataset mean and standard deviation. No standardization or normal-
ization was applied to Dataset 2, as the samples already take values between 0 and 1.

2.2.2 NOAA Global Surface Summary of the Day daily temperature max-
ima

We next consider temperature observations from 1,501 weather stations over 1960—
2020 given by the National Oceanic and Atmospheric Administration’s (NOAA) Global
Surface Summary of the Day (GSOD) dataset (NOAA National Centers of Environmen-
tal Information, 1999). The GSOD dataset contains daily summary statistics for 18 sur-
face meteorological variables derived from the NCEI Integrated Surface Hourly (ISH)
dataset (Lott et al., 2001; A. Smith et al., 2011). We use the daily maximum temper-
atures (TMAX) and daily-mean sea level pressures (SLP) from this dataset. In addition,
we supplement the GSOD dataset with 500 mb and 850 mb geopotential heights (2500,
z850) from ECMWEF’s ERAS reanalysis (Hersbach et al., 2020). These variables were in-
cluded to provide synoptic information about the atmospheric circulation at the mid-
dle and lower troposphere. For each weather station, models are fitted to predict TMAX
conditioned on concurrent station-derived SLP and geopotential heights from the near-
est ERAS5 gridpoint. Separate models are trained for each station.

The GSOD dataset contains records from more than 9,000 stations. We filter data-
limited stations by requiring a minimum number of observations for training, validation,
and testing. We use data from years 1960-2010 for training, 2011-2015 for validation,
and 2016—2020 for testing, and stations are rejected if there are fewer than 30 years of
daily records for training (10,950 samples) or 3 years for validation or testing (1,095 sam-
ples). This leaves 1,501 stations for our analysis. Inputs and targets are not detrended
or deseasonalized, but values are standardized according to the mean and standard de-
viation of the training data for each station.

2.2.3 TRMM altimetry precipitation observations with ERA5 reanal-
YSis

As an additional test case, we use reanalysis and altimetry observations of atmo-
spheric predictors to predict altimetry-observed precipitation levels. The samples in the
dataset consist of hourly snapshots in a 2°x2° box along swaths measured by the Trop-
ical Rainfall Measuring Mission (TRMM) satellites from 2000-2010 (Kummerow et al.,
2000). As predictors from ERAS5, we use equivalent potential temperatures averaged over
the planetary boundary layer (1000-900mb) and free troposphere (850-400mb), as well
as column relative humidities and precipitable water integrated over the planetary bound-
ary layer and free troposphere. Additionally, we use convective available potential en-
ergy, surface air temperatures, 500-hPa vertical velocities, and entire-troposphere pre-
cipitable water from ERA5. Finally, the subgrid percentage of convective and stratiform
areas measured by TRMM radar are used, as they are a leading indicator of precipita-
tion amount (Ahmed & Schumacher, 2015). The first 80% of observations are used for
training (176,224 samples), while the validation and testing set consist of the penulti-
mate and final 10% of samples, respectively (22,028 samples).

2.3 Metrics

We employ several metrics to assess our predictions:

1. Discrimination metrics. The Mean Absolute Error (MAE) between the true quan-
tiles at probability level ¢ (y,) and prediction (§,) is computed by

n

. 1 N
MAE(yy, 94) = n Z ‘yq,i — Yq,i
i=1

. (21)
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Low quantile prediction MAE implies that forecasts are correctly approximating
the conditional probability distribution. However, it requires that the ground truth
distribution is available.

. Calibration metrics. Calibration, also sometimes referred to as reliability, measures

the probability of forecasted events against the frequency of those events (Dawid,
1982; Gneiting et al., 2007). To measure calibration, the Probability Integral Trans-
form (PIT) (Dawid, 1984) is useful. The premise of the PIT is that the predicted
cumulative distribution FZ evaluated at the observed value y; should follow a uni-
form distribution. Thus, the histogram of p; = Fj(y;) should be approximately

flat, and the deviations from a flat histogram can be measured against the expected
level of deviation for a truly uniform distribution. The prediction of different quan-
tiles also lends itself naturally to computing PIT histograms. Consider m uniform
quantile predictions gg, 4, .., 9q,,,; for a given sample ¢. This partitions the real
line into B = m + 1 bins By, = [§g,,i» Yg11.i) for k = 0,...,m, using the con-
vention that g4, ; = —oo and g, ,,; = co. Given samples ¢ = 1,...,n, let ny

be the total number of observations y; that fall in By. The deviation statistic is
given by

- ég(’“‘;) (22)

where 7, = “* gives the frequency of the k™ bin. This deviation statistic is mea-
sured against the expected level of deviation for a true uniform distribution (Bourdin
et al., 2014)

1-B-1

ED=4{——F—. 2
oy (23)

Alternatively, the likelihood of the deviation statistic D can also be quantified un-
der the null hypothesis that the PIT histogram is sampled from a uniform distri-
bution. Under the limit of large sample size n and bin counts ng, the deviation
statistic for samples from a uniform distribution has a chi-squared distribution (Wasserman,
2004):
nB*D?* ~ x*(B —1). (24)

Thus, the deviation statistic can be used to test the null hypothesis of uniformity
against the alternative that the PIT histogram is not uniform (and that the pre-
dicted distributions are not well-calibrated).

. Proper scores. We also consider the continuous ranked probability score (CRPS;

Matheson and Winkler (1976)). The CRPS measures the quality of a probabilis-
tic prediction F' against an observed value y. The CRPS is given by

N RN 2
CRPS(F,y) = / (F(x) - 1{x>y}) dz. (25)
— 00
The CRPS is a strictly proper scoring rule, meaning that on expectation, it is op-
timal when F' is the true sampling distribution for the observations y (Gneiting
& Raftery, 2007). Thus, the CRPS cannot be improved by hedging for alterna-
tive outcomes. Predictions are penalized for being overconfident as well as under-
confident; as such, the CRPS assesses both the calibration and the sharpness of
the predicted distributions simultaneously. Notably, the CRPS is a generalization
of the Mean Absolute Error in the case in which predictions are point estimates
and F (z) is a Heaviside function. The CRPS can be approximated directly from
the predicted quantiles by using the quantile formulation of the CRPS from Laio
and Tamea (2007) and employing numerical approximations (Brocker, 2012; Tag-
gart, 2023). Under equispaced quantile predictions, this is evaluated as

CRPS(§ Zq Y= Yo iysu,) + (1= DWg, = 9)liy<y, . (26)

le
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which is simply double the average pinball loss of the observation under the given
quantiles.

2.4 Optimization and training procedure

For an appropriate comparison between the RBLQNN and other baselines, sim-
ilar architectures and hyperparameter configurations are used for all models for each dataset
considered in this study. The hyperparameter configurations for each dataset are given
in Supporting Table S1. A hyperparameter sweep over different learning rates, model
sizes, and regularizations for the synthetic datasets (Fig. 5) indicated that models con-
verged well under similar configurations for the RBLQNN and baselines, justifying the
use of identical learning rates and network sizes for comparison of different model types.
Model weights are optimized using the Adam optimizer (Kingma & Ba, 2014). Weights
are saved as checkpoints at the end of each epoch during training, and the checkpoint
with the best loss over the validation set is used for analysis on the test set. Early stop-
ping is also employed to limit computational costs from training many thousands of net-
works.

MVE networks are known to have some stability issues due to gradients typically
being more sensitive to the predicted standard deviation than the predicted mean (Sluijterman
et al., 2024; Seitzer et al., 2022). Therefore one recommendation from Nix and Weigend
(1994) is to employ a “warm-up period” where only the mean is optimized but the vari-
ance is fixed over the first few epochs. To enforce training stability, during the initial warmup
phase a fixed variance 0% is prescribed in equation (17), and outputted predicted log-
variances are penalized for deviations from this fixed variance using an MSE loss:

£ (gl 52 (w) = & [(”“) + (log 67 ~ log o3 )? (27)

OF

where the first term is taken from the Gaussian log-likelihood loss (17) and the second
term penalizes predicted log-variances, respectively.

The RBLQNN was found to converge more stably than the MVE networks with-
out any such warm-up period. However, including an analogous warm-up phase for the
RBLQNN tended to result in sharper conditional probability estimates. Thus, for the
RBLQNN, during the same initial warm-up epochs used for the MVE networks, an MSE
loss is used between the outputs of the RBLQNN and training targets. After the warm-
up period is complete, the weights are adjusted using the loss (14) to predict the quan-
tiles of the distribution.

A summary of the hyperparameter configurations for each dataset is given in Sup-
porting Table S1.

3 Model performance on synthetic data
3.1 Model error

Figure 2 shows the predicted quantiles of the different conditional probability es-
timation techniques on the three synthetic datasets described in Section 2.2.1. Signed
errors {J;—Y, in the quantile predictions as a function of x are given in Supporting Fig-
ure S5. These datasets clearly illustrate the limitations of LQR and the MVE neural net-
works: LQR fails to estimate highly nonlinear functional dependencies (e.g. Figure 2b),
while MVE networks fail to capture non-Gaussian conditional distributions (Fig. 2g).
However, even in situations where the assumptions of linearity or Gaussianity offer de-
cent but imperfect approximations, the RBLQNN results in better estimates of the con-
ditional distributions. For instance, although the normal distribution and Gumbel dis-
tribution share certain features such as unimodality and infinite support (Fig. 2a), the
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RBLQNN is able to capture the skewness of the distribution (Fig. 2d) while the MVE
neural network cannot (Fig. 2¢). Similarly, although the linear quantile regression ac-
curately approximates the nearly linear median quantiles of Dataset 2 (Fig. 2e and 2g),
the quantiles at the tails of the distribution are poorly predicted by the linear quantile
regression model while they are well-fit for the RBLQNN (Fig. 2h).

True quantiles Linear quantreg Gauss MLE network Quantile network

(a) (b) (0 (d)
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Figure 2. Predicted conditional quantiles on Synthetic Dataset 1 (a—d), Dataset 2 (e-h), and
Dataset 3 (i-1). Scatterplot shows the test sample generated from the ground truth distribution,
while colored lines indicate predicted quantiles at specified probability levels g. (a, e, i) True
quantiles. (b, f, j) Predictions made using linear quantile regression. (c, g, k) Predictions made
using MVE networks. (d, h, 1) Predictions made using the RBLQNN.

Figure 3 shows the average errors of each of the individual quantile predictions av-
eraged over the test set and further demonstrates how the assumptions made by each
baseline result in poorly predicted distributions. Dataset 1 shows that inadequately cap-
turing nonlinear dependencies with linear quantile regression can result in systematically
large errors for all quantiles in the predicted conditional distribution (Fig. 3a). The MVE
network resolves the issue of nonlinearity, but the assumption of Gaussianity can result
in poor estimation of particular quantiles. For instance, while the MVE network provides
reasonable estimates for the bulk of the distribution in Dataset 1, the tails of the dis-
tribution tend to be underestimated (Fig. 2c and Fig. 3a). Large errors in the tails of
the distribution also occur in Dataset 2 and 3, as the Gaussian approximation is unable
to capture the compact support of the distribution for Dataset 2 nor the bimodality of
Dataset 3. The bimodality of Dataset 3 also results in the MVE network producing poor
quantile predictions near each lobe of the bimodal conditional distribution (Fig. 2k and
3c). In contrast with each of these baselines, the RBLQNN tends to produce quantile
predictions with good predictions for all quantiles of the distribution.

3.2 Comparison against other quantile regression neural network ap-
proaches

Figure 4 compares the performance of the RBLQNN to the alternative quantile re-
gression neural network approaches given in Section 2.1.3. Since the network performance
is sensitive to the weight initialization, for each quantile neural network method, an en-
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Figure 3. Mean absolute errors of predicted quantiles for the RBLQNN (red), linear quantile
regression (light green), and MVE neural network (blue) for (a) Synthetic Dataset 1 and (b) Syn-
thetic Dataset 2.

semble of 100 networks with weights initialized using different random seeds is used to
robustly evaluate performance.

For the three synthetic datasets, the RBLQNN tends to produce better quantile
predictions than the baseline quantile neural network techniques (Fig. 4a, 4c, and 4e).
The RBLQNN error is similar to, though on average slightly lower than, the quantile neu-
ral networks which directly predict quantiles (the “unweighted” and “no-bias” networks).
This seems to be primarily due to the inclusion of the ReLU bias loss (Eq. 13), as the
comparisons between the two baselines with different quantile weighting schemes do not
result in substantially different performance. Including the ReLLU bias loss to encour-
age predicted distributions to be valid may impose stability constraints which facilitate
network convergence during training.

Figure 4b, 4d, and 4f show the proportion of test samples which result in mono-
tonic quantile predictions (i.e., nondegenerate conditional probabilities). The RBLQNN
results in significant reductions in the number of predicted conditional distributions that
are degenerate when compared to the unweighted and no-bias networks. For instance,
applying the ReLLU bias loss in Dataset 2 reduces the average number of samples with
quantile crossings from more than 25% to less than 3% (Supporting Table S2). For Dataset
3, all but two ensemble members completely eliminate quantile crossings with the RBLQNN,
whereas roughly 20% of ensemble members have quantile crossings for the unweighted
and no-bias quantile networks (Supporting Table S3).

While the RBLQNN reduces the number of quantile crossings compared to other
quantile neural networks which directly predict quantiles, it does not completely elim-
inate them. In contrast, the cumulative increment network’s design explicitly prohibits
all quantile crossings. However, Figures 4a, 4c, and 4e all show that the predicted dis-
tributions made using the cumulative increment network tend to be worse than the quan-
tile neural networks which directly output quantiles. The relatively poorer performance
of the cumulative increment network is likely due to instabilities resulting from the sum
in (18) used for predicting higher order quantiles.

3.3 Training stability

A central challenge in the implementation of neural networks is that model per-
formance can be sensitive to various hyperparameters (Goodfellow et al., 2016). Weights
and biases in a neural network are normally optimized using stochastic gradient-based
optimization techniques, which can evolve unpredictably under the highly nonconvex,
high-dimensional loss landscapes set by the training data, network architecture, regu-
larization, and loss functional. The convergence of a neural network thus depends on all
of the factors that determine the loss landscape as well as the specifications that pre-
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Figure 4. Performance of different quantile regression neural network techniques on Syn-
thetic Dataset 1 (a, b), Dataset 2 (c, d), and Dataset 3 (e, f). (a, ¢, €): Mean absolute errors

for quantile neural network predictions, averaged over 100 ensembles created by initializing net-
work weights with different random seeds. Red: RBLQNN (Eq. 14). Blue: Unweighted quantile
regression neural network of Xu et al. (2017). Light green: No-bias quantile regression neural
network framework implementing the inverse-expectation weighting but without the ReLU bias
loss (Eq. 13). Purple: cumulative increment network of Padilla et al. (2022). (b, d, f) Boxplots
showing the fraction of nondegenerate probability distributions predicted by each quantile neural
network approach. Conditional probability distributions are considered degenerate for a given

sample if the predicted quantiles are not monotonic.

scribe the optimization procedure. As a result, hyperparameter selection often requires
extensive tuning or automated sweeps over various configurations to obtain a well-fitted
model. It is therefore advantageous to train using a loss function that tends to converge
robustly over a range of different hyperparameters and datasets. We investigate the sen-
sitivity of the RBLQNN against the MVE networks for the three synthetic datasets.
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515 Network training is often particularly sensitive to hyperparameters such as the learn-
516 ing rate, network architecture, and regularization (L. N. Smith, 2018; Godbole et al., 2023).

517 Therefore, we apply a grid search of different hyperparameters over a range of learning
518 rates, regularizations, and network sizes with values provided in Supporting Table S4.

519 We use eight different learning rates, three regularization levels, 2 layer sizes and 3 dif-
520 ferent numbers of neurons per layer, to sample a total of 144 hyperparameter combina-
521 tions. All other hyperparameters are set using the configuration given in Supporting Ta-
522 ble S1.

523 Figure 5a shows the best validation loss attained during training by the RBLQNN
524 and MVE network for each of the 144 hyperparameter combinations. To permit a com-
525 parison between the different loss functions for the different networks, validation losses
526 are normalized to the [0, 1] range so that the hyperparameter configuration with the low-
507 est loss over the 144 hyperparameter combinations has a normalized value of 0 and the
528 highest loss has a normalized value of 1. Kernel density estimates indicate that losses

529 cluster near the minimum values, indicating convergence for a broad range of hyperpa-
530 rameters for both the RBLQNN and MVE networks. However, for each of the three datasets,
531 more values cluster near the minimum loss for the RBLQNN than for the MVE network,

532 suggesting that training tends to be more stable for the RBLQNN than for the MVE net-
533 work. Notably, the RBLQNN appears to attain strong performance for a broader range

534 of learning rates, a crucial hyperparameter for neural network training. For low learn-
535 ing rates (e.g. 10~%), normalized validation losses are high for each network; however,
536 increasing learning rates results in better performance gains for the RBLQNN than for
537 the MVE network (e.g., a normalized validation loss that is 18.2% lower on average for
538 the RBLQNN than MVE network when using learning rates of 10~7). For high learn-
539 ing rates (1071), losses begin to increase significantly for the MVE network but less so

540 for the RBLQNN.

sa1 Figure 5b, 5¢, and 5d show the empirical cumulative distribution function of the

542 losses given in the strip plots in Figure 5a for each of the three synthetic datasets. The
543 CDF of the RBLQNN is above the CDF of the MVE network at most loss levels, indi-
544 cating that a greater proportion of RBLQNN converge within a given margin of the low-
545 est loss than the MVE networks. For instance, for Synthetic Dataset 1, only 66% (71%)
546 of MVE neural networks converge within 5% (20%) of the minimum loss, whereas 69%

547 (78%) of the RBLQNNSs converge within this margin of the minimum loss.

548 3.4 Sample-based metrics

549 The low MAE of the predicted quantiles made on the synthetic datasets indicates
550 that the RBLQNN can successfully approximate conditional distributions. However, for
551 most datasets, the ground truth distribution is unknown, making it impossible to assess
552 predicted conditional probabilities directly against the true distribution. In this section,
553 we explore sample metrics that assess the predicted distributions against the data.

554 Figures 6a, 6¢, and 6e show histograms of the CRPS yielded by the predicted dis-
555 tributions of the different conditional probability estimation techniques over the test set.
556 Averaged over all test samples, the RBLQNN has the lowest average CRPS of the three
557 conditional probability estimation techniques for all synthetic datasets. The sample av-
558 erage CRPS for the RBLQNN nearly matches the CRPS obtained by using the ground
559 truth conditional probability distribution for all three datasets.

560 Despite the RBLQNN attaining a lower sample-averaged CRPS for all three datasets,
s61 the histograms of CRPS significantly overlap for each of the different methods. Since the
562 CRPS is a sample-based metric which is optimal only on expectation, the statistical sig-
563 nificance of the low sample-averaged CRPS must be assessed. To assess the statistical

564 significance of the sample-averaged CRPS over a range of different sample sizes, we em-
565 ploy bootstrapping with 100 ensemble members for a variety of bootstrap sample sizes
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Training stability of the RBLQNN and MVE network evaluated over 144 hyper-

parameter combinations for the three synthetic datasets. (a) Strip plots of the lowest validation
loss attained during training for the RBLQNN and MVE for the three different datasets, with

gray shading showing a kernel density estimate. Losses are normalized to the [0, 1] range. Colors

indicate the learning rate. (b, ¢, d) Empirical CDFs of the normalized validation losses for each of
the three different synthetic datasets for the RBLQNN (red) and MVE network (blue). Boldface

percentages in the top left corner indicate proportion of neural networks which converge within

5% of the best loss from all hyperparameter configurations (indicated by dark gray shading).

Plain typeface percentages indicate proportions of neural networks within 20% of the best loss

(light gray shading).

Ny, from 10 to 10,000. For each ensemble member, N, samples are drawn with replace-
ment from the test set, and the sample-averaged CRPS is computed over that sample

for the various conditional probability estimation techniques. The CRPS sample aver-
ages for different ensemble members are compared pairwise with the true distribution
CRPS sample averages to evaluate whether the predictions made by a given method are
statistically distinguishable from the true distribution for a given sample size ;. For
instance, if among the 10,000 pairwise comparisons between the 100 ensemble members
of the MVE network and 100 members of the true distribution CRPS sample averages
fewer than 5% of the comparisons yield lower CRPS sample means for the MVE network,
then it can be concluded that the probabilistic predictions made by the MVE network
are inadequate for that sample size.

Figures 6b, 6d, and 6f show the ensemble spread of the CRPS sample averages for
each of the different methods for a variety of bootstrap sample sizes N,. As the boot-
strap sample size increases, the ensemble spread of the CRPS sample averages decreases
for each of the different methods, revealing the minimum sample sizes needed to reject
the probabilistic models. For instance, for Dataset 1 only a few hundred samples are needed
to establish that the linear quantile regression poorly predicts probability distributions,
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Figure 6. Continuous ranked probability score evaluated over the test samples of Synthetic
Dataset 1 (a, b), Dataset 2, (c, d) and Dataset 3 (e, f). (a, c, e) Histograms of the continuous
ranked probability score yielded by the predicted distributions of the RBLQNN (red), MVE net-
work (blue), and linear quantile regression (light green) evaluated over the 1,000 test samples.
The black dashed line shows the histogram of the CRPS attained by evaluating the ground truth
distribution against the observed samples. The continuous ranked probability scores have been
normalized relative to the climatological CRPS. Quantities in the legend indicates the sample-
average CRPS for each method. (b, d, f) Bootstrap-sampled CRPS sample averages. For a vari-
ety of quasi-logspaced sample sizes N, ranging from 10 to 10* (multiples of 1, 2.5, 5 times powers
of 10), a bootstrapped sample of size N; is sampled with replacement from the test set, and the
CRPS sample average is taken for each method of conditional probability estimation. This is
repeated 100 times to create a bootstrap ensemble. The thick notched lines show the ensemble-
mean sample-average CRPS for each sample size Ny, and the shaded region shows the ensemble
spread (+ one standard deviation). The black dotted line indicates the sample size of the test

set (N = 1,000). The fractions in the legend evaluate the probability that the sample-averaged
CRPS for each method will be lower than the CRPS yielded by the ground truth distribution
through pairwise comparisons of bootstrapped samples with N, = N. For instance, a fraction of
p = 0.03 for the MVE network (panel d) indicates that only 3% of bootstrapped CRPS sample
averages for the MVE network are lower than the CRPS sample averages computed using the
ground truth distribution. This percentage is computed over the 10,000 pairwise comparisons be-
tween the 100 ensemble members for the MVE network CRPS sample averages and 100 ensemble

members for the ground truth distribution CRPS sample averages.
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whereas 1,000 samples are needed to reject the probabilistic predictions made by the MVE
network for Dataset 2. In contrast, the probability distributions predicted by the RBLQNN
cannot be rejected up to samples of size 10,000. The evaluations of the CRPS in Fig-

ure 6 indicate that even in cases in which the predicted probability distributions are su-
perior for a given method, substantial sample sizes may be needed to discern performance
using sample-based metrics such as the CRPS. Care should therefore be taken when in-
terpreting differences between sample-mean CRPS for different methods, especially for
datasets with small sample sizes.

4 Model performance on observational datasets

We next evaluate the performance of the RBLQNN against the MVE network and
linear quantile regression for the GSOD daily maximum temperature datasets as well
as the TRMM precipitation dataset. For the GSOD datasets, we evaluate models trained
separately at 1,501 different NOAA weather stations with 1,107-1,827 test samples en-
compassing years 2016-2020. The TRMM dataset is a single dataset with 22,028 test
samples. As the ground truth probability distribution is unknown for these datasets, per-
formance is evaluated using sample-based metrics such as the CRPS and PIT histogram
deviation statistic.

4.1 GSOD daily maximum temperatures

Figure 7 compares the sample-averaged CRPS of the RBLQNN against the var-
ious baselines. Histograms of the sample-averaged CRPS over all locations for each of
the different methods are shown in Supporting Figure S6. To maintain consistency be-
tween locations with different climatological variability, CRPS values are normalized by
the CRPS obtained by applying the climatological quantiles of daily temperature max-
imums at each location, so that a normalized sample-mean CRPS of 1 indicates prob-
abilistic predictions no better than climatology. For all three conditional probability es-
timation techniques, time-mean CRPS is lower than the climatological CRPS at 1,493
out of 1,501 stations (99.4%). Moreover, the probabilistic models result in better CRPS
than the MSE network at 1,492 of 1,401 locations (99.2%). Thus, all three conditional
probability estimation techinques tend to provide improved information about the con-
ditional distribution which is not permitted either by climatological or deterministic base-
lines.

The differences in CRPS between the RBLQNN and other conditional probabilis-
tic baselines (Fig. 7c and 7d) are less pronounced than the difference in CRPS for the
RBLQNN and climatological or MSE network predictions (Fig. 7a and 7b). Sample-mean
CRPS for the RBLQNN is lower than the CRPS for the linear quantile regression at 1,477
of 1,501 locations (94.8%). The locations in which the linear quantile regression outper-
forms the RBLQNN could indicate overfitting on out-of-sample distributions, or random
variations due to a lack of statistical significance arising from an insufficient sample size.
Using pairwise comparisons of bootstrapped ensemble members to assess significance as
in Section 3.4 shows that the sample-mean CRPS is statistically significantly lower for
the RBLQNN than linear quantile regression at 950 of 1,501 stations (63.2%), indicat-
ing that more samples may be needed to attain statistically significant lower CRPS with
the RBLQNN for many locations.

Sample-mean CRPS of the RBLQNN is lower than the MVE at 836 of 1,501 lo-
cations (55.7%). While a slight majority of locations have lower CRPS with the RBLQNN
than with the MVE network, few are statistically significant (19 of 1,501 stations, 1.3%).
This can indicate that conditional probability distributions of TMAX are relatively well-
described using Gaussian distributions, or that more samples are needed to differenti-
ate the skill of the RBLQNN predictions from those of the MVE network.
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Figure 7. Comparison of sample-average CRPS between RBLQNN predictions and baselines.
Maps of the difference in sample-mean CRPS between RBLQNN and (a) climatology, (b) MSE
network, (c) linear quantile regression, and (d) mean-variance estimation network. Values have
been normalized with respect to the climatological CRPS sample mean at each location. Circles
outlined in black indicate statistically signifcant differences, determined using the pairwise com-
parisons method of Section 3.4. Crosses indicate differences which are not statistically significant.

Note the order of magnitude difference in the colorbar extent for panels (a, b) vs (c, d).
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632 Despite the limitations of the small test sizes for individual stations, a few cohe-

633 sive geographical regions where the RBLQNN has lower sample-average CRPS than the
634 MVE network point to systematic causes for better predictions from the RBLQNN. The
635 greatest decrease in CRPS from using the RBLQNN instead of the MVE network oc-

636 curs primarily in the southeastern United States and Alaska. PIT deviation statistics

637 (Fig. 8) indicate that predictions are relatively well-calibrated for the RBLQNN in these
638 regions. For instance, in North and South America, 278 of 350 stations (79%) have bet-
639 ter calibration statistics for the RBLQNN than the MVE network. Furthermore, while
640 55 of 350 locations (15%) have PIT histograms fully consistent with the null hypothe-
61 sis of uniformity for the RBLQNN, only 11 (3%) of the stations have PIT histograms

642 consistent with uniformity using the MVE network. The relatively well-calibrated prob-
643 abilistic predictions of the RBLQNN relative to the MVE network predictions in the south-
644 eastern United States suggest that the RBLQNN is successfully estimating inherently

645 non-Gaussian conditional distributions of TMAX. This region is consistent with the re-
646 gions of high negentropy highlighting non-Gaussian marginal distributions in Figure 1c.
QNN - LQR
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Figure 8. Differences in calibration statistics for RBLQNN predictions and those of (a) linear
quantile regression and (b) MVE networks. Calibration is measured using the deviation statistic
of the PIT histogram described in Section 2.3. Deviation statistics are normalized by the ex-

pected level of deviation for each location.

647 Regions in which the RBLQNN yields higher CRPS than the MVE network include
648 Southeast Asia (particularly the Malay Peninsula and southeastern China), as well as

649 Siberia and the Indian subcontinent. For these regions, the comparatively stronger per-
650 formance of the MVE network indicates that the Gaussian approximation adequately

651 represents the underlying conditional distributions. The validity of the Gaussian approx-
652 imation may be related to the variability in TMAX that is attributable to functional de-
653 pendence on the regressors. Supporting Figure S7 shows the distribution of differences
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in CRPS between the RBLQNN and MVE network as a function of the MSE network
R?. Since the MVE network and RBLQNN share the same architecture as the MSE net-
work, the R? yields an estimate about the proportion of variability which is explained

by the nonlinear functional dependence of TMAX on the model inputs as opposed to the
conditional distribution itself. Supporting Figure S7c suggests that the Gaussian approx-
imation is the most valid when a high proportion of the variance is explained by the de-
terministic functional (R? ~ 1) or when a negligible proportion of the variance is ex-
plained by the deterministic component (R? ~ 0). In regions such as the Malay penin-
sula, R? of the MSE network is low, possibly due to the influence of the monsoon sys-
tem and effects of moisture variations on the temperature profile as well as complex orog-
raphy. In such regions, the inputs to the RBLQNN may be rather uninformative, result-
ing in challenges with optimization of individual quantiles in the RBLQNN. Conversely,
in regions such as southeastern China where R? is high, much of the variability in TMAX
is explained by the deterministic component, and the remaining variability may resem-
ble Gaussian noise. The RBLQNN tends to outperform that of the MVE networks in
regions of intermediate R2, in which the inputs are informative yet much of the variance
is not fully explained by the deterministic functional. For instance, at stations where the
MSE network R? is between 0.3 and 0.7, 73.1% of stations have lower time-averaged CRPS
with the RBLQNN than with the MVE network.

The timeseries of predicted conditional probability distributions shown in Figure 9
help illustrate the situations in which the RBLQNN performs well. Figures 9a and 9b
show two stations where the RBLQNN has greater average CRPS than the MVE net-
work. At Bangkok (Fig. 9a), temporal changes in the distribution are small over the course
of the year, with the observed sea level pressure and geopotential heights providing min-
imal information about TMAX. On the other hand, at Fuzhou, (Fig. 9a), nearly all of
the variance in temperature is explained by the deterministic component. In both of these
cases, the principle of maximum entropy validates the Gaussian approximation, as there
is a lack of constraining information about the conditional distributions of TMAX.

Figures 9c¢ and 9d show two examples where the RBLQNN does outperform the
MVE network, and the differences are statistically significant. The predicted probabil-
ity distributions respond to seasonality, both through the change in mean predicted tem-
perature throughout the year as well as changes in variability between the winter and
summer months. However, the distributions predicted by the quantile neural network
are negatively skewed, allowing the RBLQNN to permit cold extremes during the win-
ter while maintaining sharp predicted distributions.

4.2 TRMM precipitation

While the conditional probability estimates of the RBLQNNSs trained to predict
temperatures in Section 4.1 mostly outperform those of linear quantile regression, dif-
ferences between the RBLQNN and Gaussian maximum likelihood networks are less pro-
nounced. This may be because the probability estimates of TMAX conditioned on sea
level pressure and geopotential heights are sufficiently approximated by normal distri-
butions at most stations, or because the test size is insufficient to assess the probabilis-
tic predictions. In this section, we focus on a single dataset which contains significantly
more samples (20,028 test samples as opposed to at most 1,827), and for which the Gaus-
sian approximation is clearly less valid.

The CRPS is shown for the different conditional probability estimation techniques
for the precipitation dataset in Figure 10a. Here, it is clear that the CRPS is substan-
tially better for the RBLQNN than all of the other baselines. Probabilistic predictions
are the worst for the Gaussian neural network, and both the Gaussian neural network
and linear quantile regression produce probabilistic estimates with even worse scores than
an MSE-trained deterministic network. Computing the CRPS using bootstrapped sam-
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Figure 9. Timeseries of predicted conditional probability distributions for GSOD TMAX for
year 2020 in (a) Bangkok, (b) Fuzhou, (c¢) Tampa, and (d) Sacramento. Colored lines indicate the
predicted quantiles, with different panels for RBLQNN (top), linear quantile regression (middle)
and mean-variance estimation networks (bottom). Black crosses indicate observed TMAX. The

black line indicates predictions made by the MSE network, with R? given in the legend.

ples (Figure 10b) shows that for bootstrapped sample sizes of 500 samples or more, the
RBLQNN consistently results in better sample-averaged CRPS than the other baselines.
Thus, the RBLQNN produces significantly better probabilistic predictions on the pre-
cipitation dataset than the Gaussian maximum likelihood network or the linear quan-
tile regression method. This indicates that both nonlinear functional dependence and
non-Gaussianity are essential properties of the conditional distributions of precipitation.

5 Discussion

The chaotic and nonlinear dynamics of the Earth system implies that geophysical
variables are prone to fluctuations and uncertainties, posing challenges to predicting geo-
physical variability with complete certainty. Thus, managing weather and climate risk
requires quantifying and constraining estimates for geophysical variability which depends
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Figure 10. CRPS of different conditional probability estimation techniques evaluated on the
TRMM precipitation dataset. (a) Histograms of the CRPS evaluated over all test samples for the
RBLQNN (red), Gaussian maximum likelihood network (blue), linear quantile regression (light
green) and MSE network (black dotted lines). Values in the legend indicate sample-averaged
values. (b) As in Figure 6b, 6d, and 6f but for the TRMM dataset.

on fluctuating observable conditions. In this paper, we propose an approach for char-
acterizing the uncertainties of geophysical quantities such as daily maximum tempera-
tures or precipitation amounts based on other measurable conditions using quantile re-
gression neural networks. To address some typical issues with quantile neural networks,
our implementation—termed the “ReLU bias loss quantile neural network” (RBLQNN)—
employs two novel and explicit modifications to the loss function to predict quantiles with
equal consideration and to mitigate the possibility of predicting degenerate probability
distributions. Using a suite of different datasets—synthetic distributions, in-situ daily
temperature maxima observations from weather stations, and altimetry-observed pre-
cipitation data—the RBLQNN is compared against mean-variance estimation networks
(which presuppose that conditional distributions are Gaussian) and linear quantile re-
gression (where linear conditional dependence relationships are assumed). The RBLQNN
is versatile, issuing conditional probability estimates which faithfully describe the tar-

get variable in the broad class of datasets considered.

We evaluate the RBLQNN on three synthetic datasets in which the true distribu-
tion is known a priori, demonstrating several minor advantages over other approaches.
The RBLQNN performs well in situations where the MVE network or LQR are deficient,
such as when conditional probability distributions are non-Gaussian or when the response
variable depends nonlinearly on the regressors. Evaluations of the RBLQNN against other
quantile neural network techniques demonstrates advantages of our approach: conver-
gence for our method appears to be more stable than the cumulative increment approach
of Padilla et al. (2022), whereas the ReLU bias loss reduces degenerate probability dis-
tributions due to quantile crossings without significantly degrading performance. Eval-
uations of the convergence of the RBLQNN over a large range of hyperparameters sug-
gests that the RBLQNN trains stably over a broad hyperparameter space relative to the
MVE networks. Of course, a caveat to these results is that the range of hyperparame-
ters tested could be extended (e.g., more layers), and training may be sensitive to other
hyperparameters not tested (such as activation function or optimizer).

Comparing the CRPS of the RBLQNN predictions against linear quantile regres-
sion and the MVE network predictions illustrates the relative importance of capturing
nonlinearities or non-Gaussian distributions in the representation of uncertainties. For
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the GSOD daily temperature maxima dataset, most stations have lower sample-averaged
CRPS when using the RBLQNN than when using linear quantile regression, and com-
parisons between bootstrapped CRPS averages indicate that at many locations these dif-
ferences are statistically significant. The relative performance of the RBLQNN over lin-
ear quantile regression implies that capturing nonlinear functional dependencies between
temperature and local pressure or geopotential heights is paramount to constraining tem-
perature uncertainties. Differences in CRPS between the RBLQNN and the MVE net-
work are smaller and not statistically significant, indicating that allowing for non-Gaussian
conditional probabilities may be of secondary importance.

In the context of daily temperature maxima, the relative validity of the Gaussian
approximation in many situations may be related to the principle of maximum entropy
(Sura & Hannachi, 2015; Jaynes, 1957): namely, that the distribution which maximizes
the information entropy—i.e., the least informative distribution—under a set of given
constraints is that which is most probable. Under the very limited constraints of given
mean and variance, the Gaussian distribution maximizes the differential entropy, and thus
without further information constraints the Gaussian approximation is valid. It was noted
that the CRPS for the RBLQNN often was higher than the MVE networks when much
of the variance was explained by the deterministic component (MSE network R? ~ 1)
or when very little of the variance was explained by the deterministic component (R? ~
0). In such cases, the Gaussian approximation may be relatively valid because the in-
puts are uninformative about the conditional distribution, and thus the distribution is
relatively unconstrained. On the other hand, in regimes where the inputs are informa-
tive to predicting temperature, but much of the variance is left unexplained by the de-
terministic functional, additional information constraints may apply and the maximal
entropy distribution may be more accurately described by non-Gaussian probability dis-
tributions.

While the RBLQNN does not have statistically significantly better CRPS than the
MVE networks on the GSOD dataset, it is possible that the RBLQNN does predict con-
ditional distributions of temperature more skillfully, yet that the sample size is insuffi-
cient to discern this skill. The synthetic datasets in Section 3 demonstrate that even if
the RBLQNN clearly predicts the true distribution with greater accuracy (e.g. Fig. 3)

a large number of samples may be needed to distinguish skill using sample based met-
rics like the CRPS (e.g. Fig. 6). Station temperature observations with significantly more
samples may more clearly reveal the skill of the RBLQNN, though it is difficult a pri-

ori to estimate how many samples are needed for non-Gaussian statistics to emerge.

In light of the meager sample sizes for the GSOD temperature datasets and chal-
lenges identifying non-Gaussian conditional distributions, we also evaluated performance
of the RBLQNN on the TRMM precipitation dataset, in which the sample size was over
ten times as large and the Gaussian approximation is clearly invalid. In this case, the
performance of the RBLQNN clearly outperforms the LQR and MVE network baselines.
In principle, maximume-likelihood losses of other probability distributions can be used
to predict parameters of different families of distributions. Since precipitation can take
only nonnegative values, precipitation may be better modeled using distributions sup-
ported on the semi-infinite line, such as the exponential distribution or the Gamma dis-
tribution. Nevertheless, the RBLQNN is a simple approach to estimate conditional prob-
abilities which does not require any assumptions about the parametric family of the un-
derlying distribution.

Open Research Section

The NOAA Global Surface Summary of the Day dataset is available at https://
www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:
€00516 (NOAA National Centers of Environmental Information, 1999). The Tropical
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Rainfall Measuring Mission dataset is available at https://gpm.nasa.gov/data/directory

(Kummerow et al., 2000). The ERA5 reanalysis dataset is available at https://github
.com/google-research/arco-erab (Carver & Merose, 2023), courtesy of the Coper-
nicus Climate Changes Service (C3S) Data Store (Hersbach, 2000). The code used for

data processing, model training, analysis, and visualization in this study and files for repli-
cating the software environment are provided under the MIT license at https://github

.com/andrewbrettin/quantile ml (Brettin, XXXX).
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Figure S1. Pinball function used as a quantile loss (Eq. 4).
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Figure S2. Expected quantile loss E [p,(Y — y,)] as a function of quantile probability levels ¢

for normal (blue), uniform (red), and exponential distributions (purple).
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Figure S3. Timeseries and histograms of samples generated for Synthetic Dataset 3. (a)
Timeseries of x (blue) and y (orange) components of the potential system (Eq. 19) for the
for times 0 < ¢ < 50. (b) Joint histogram of samples of (x, y) for times 0 < ¢ < 10, 000.
(¢) Theoretical stationary distribution given by the Fokker-Planck equation (the Boltzmann
distribution e~V @¥)) for the potential given in Eq. 20. (d) Difference between the empirical

histogram (c) and true density (d), f—f (e) Relative difference between the histogram and

true density (f — f)/f.
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Figure S4. Ensemble mean position vector magnitude ||(z,y)||2 over 50 different trajectories

for the first 100 seconds of simulation time. Shading indicates the ensemble spread (+10).
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Figure S5. Quantile errors g, — v, as a function of x.
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Figure S6. Histogram of sample-mean CRPS over all 1,501 GSOD stations for quantile neural
network (red), Gaussian maximum likelihood network (blue), linear quantile regression (green),

and MSE network (black). Values have been standardized with respect to the climatological

CRPS at each location.
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with lower CRPS for the quantile neural network.
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Table S1. Hyperparameter configurations for different datasets.

Hyperparameter

Synthetic datasets GSOD dataset TRMM dataset

Hidden layers

Neurons per hidden layer
Bias loss weight 1 (QNN)
Batch size

Optimizer

Learning rate

Lo regularization
Maximum epochs

Early stopping epochs
Warmup epochs
Prescribed variance

3

128
1.0
256

3
128
0.01
256

3
128
0.01
256
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Table S2. Number of test samples (out of 1,000) resulting in quantile crossings for each

quantile neural network technique, averaged over all 100 ensemble members.
Dataset Quantile NN Unweighted No bias Cumulative inc.

1 2.1 6.06 55 0.0
2 26.5 266.2 258.8 0.0
3 0.0 0.50 1.1 0.0

Table S3. Proportion of ensemble members resulting in no quantile crossings over all samples.
Dataset Quantile NN Unweighted No bias Cumulative inc.

1 0.38 0.02 0.05 1.0
2 0.48 0.00 0.00 1.0
3 0.98 0.79 0.76 1.0
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Table S4. Hyperparameters used for training stability analysis.

Hyperparameter Values considered

Learning rate 1078 1077 107 10=° 10~* 107® 1072 107!
Lo weight decay 0 107° 1073

Number of layers 2 3

Neurons per layer 64 128 256
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