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Timescales for sea level: a challenge for
subseasonal-to-seasonal (S2S) prediction
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Quantifying uncertainty using
maximume-likelihood loss function

Use fully-connected artificial neural networks to
1. forecast dynamic sea level at a given location and time horizon t, and
2. quantify the uncertainty associated with the prediction.

CESM Large Ensemble inputs
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Part 1: predict point-estimate for sea level at time t
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Uncertainty-permitting forecasts

MAE difference, DP — ANN (forecast lead T =20 days)

* Most regions exhibit
nonlinear, nonlocal
sources of predictability

 Initial conditions can
often be leveraged to
make better predictions
(forecasts of opportunity)
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Emergence of forecasts of
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Nonlinear, nonlocal sources of predictability emerge on S2S timescales

Initial conditions favorable to forecasts of opportunity emerge on S2S timescales



Drivers of predictability

Inputs times gradients
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i: feature index
j : sample index

Composites from most confident predictions, forecasts of t=20 days
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Local persistence drives predictability on time horizons of 20 days
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Drivers of predictability

Composites from most confident predictions, forecasts of t=120 days
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i: feature index
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Equatorial SSTs are a dominant source of sea level predictability at t=120 days



Showed emergence of predictability and

S u m m a ry forecasts of opportunity on S2S timescales

MAE by confidence level
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Quantified uncertainty in sea level
forecasts using neural networks
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Identified sources of sea level
predictability using network'’s gradients



