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> Numerous sources of uncertainty for seo
* surface height forecasts

Simulated SSH anomalies in CESM2-LE
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Staftistical-dynamical approaches:
Linear inverse modeling (LIM)

« Assume system state is governed by a linear, stochastic dynamical
system:

dz 5
i Az +¢&; &~N(O,0/)
» Best estimate for A: .
A = —10g[C(7)C(0) ]
0
where the covariance matrix Cis given by C;;(t + 1) = (z;(t + T)Z; (D).

« Forecasts at lag T are given by
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<> Challenges with LIM

 Dimensionality reduction:
Computing C(z,)C(0)~* requires
low-dimensional state variable z

* Nonlinear dynamics: highly
nonlinear dynamics may not be
well-represented using a linear
propagator

Linear propagator
depends on time lag

0.8

0.6 -

0.4 -

0.2

0.0

Nino3.4 skill

i— LIM
fem SST13-LIM

SST23-LIM

r— LIM (noz)

Newman, Alexander & Scott 2011

3 6 9 12 15
Forecast lead (months)

18

Worse long-term

than
with fewer PCsll

> predictions with

Penland & Sardeshmukh 1995

25 — 11T
2t

1.5 :

1A

1:

05 [

T

[ [ I [ ] | | I

16
T, (months)



<> Goals

« Can we perform dimensionality reduction in a way that
results in better forecasts of SSH on daily-to-interannual
timescales?

« Can we ensure that nonlinear dynamics are well-
modelled by a linear propagatore
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\\/Approoch: Koopman Autoencoder
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Timestepping and dimensionality
reduction are learned together!
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\\/Approoch: Koopman Autoencoder
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<> Baselines

Compare Koopman Autoencoder to baselines when dimensionality
reduction and propagators are learned separately:

Dimensionality reduction _
techniques Latent-space propagators
]. Princip.ol Component 1. Damped persistence (DP)
Analysis (PCA) 2. Llinearinverse modeling (LIM)
2. Convolutional Autoencoder
(CAE)

« Same architecture as the
Koopman Autoencoder, but
without linear embedding



Sensitivity to dimensionality of propagator
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Regions of skill

Skill of Koopman Autoencoder
relative to PCA+DP (Murphy, 1988):
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Regions of skill

Skill of Koopman Autoencoder
relative to PCA+LIM:

- Skill at lag tau = 0 days

MSEkar
MSEr v

S5 =1-—

Skill vs PCA-LIM



<> Conclusions

* Learning dimensionality reduction and a propagator
simultaneously in the Koopman Autoencoder results in a
better propagator for SSH forecasts

« Reconstruction skill of the model identifies regions in which
Improved representation can result in better regional
predictions
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