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Sea level change and variability

IPCC (2022) Yin et al (2020)

Long-timescale changes Short-timescale variability



Predicting future sea level events

Requires understanding two components:

1. Changes in local mean
2. Changes in the 

shape of distributions



Research goals:
1. Quantify changes in probability distributions of 

observed sea level
2. Interpret changes in distribution in terms of the 

statistical moments



Methods: quantifying changes in 
sea level distributions 

Extending approach of McKinnon and Rhines 2016:
• Quantile regression
• Projection onto basis functions



Observed changes in 
distributions

Quantile regression:

● Ordinary least squares regression 

seeks to estimate the conditional 

mean of a response variable Y to 

a predictor X:

● Quantile regression seeks to 

estimate conditional quantiles Z(𝑞) 

of a response variable Y to a 

predictor X:

Quantile regression on a 
daily tide gauge timeseries
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Projection onto basis functions



Projection onto basis functions



Motivation for Legendre basis

Moment basis functions are correlated:

Introduce Legendre basis:



Legendre basis effects on distributions

Effect of Legendre basis applied to standard normal distribution 



Cornish-Fisher Expansion

• Is there a relationship between the moments of a distribution and its quantiles? Yes:

• Cornish and Fisher (1937) show that the operator  exp
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  increases the rth 

cumulant of a distribution f(x), but leaves the distribution otherwise unchanged

• This allows us to estimate percentiles 𝑦𝑝 of a distribution given the cumulants:
𝑦𝑝 ≈ 𝜇 + 𝜎𝑤;
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      where 𝑧𝑞 is the q-quantile of the standard normal distribution.

• Here S and K are parameters which approximate the skewness and kurtosis for small 
deviations from Gaussianity.



Changes in percentiles from changes in moments

𝑦𝑝 ≈ 𝜇 + 𝜎𝑤;
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Take derivatives and evaluate near standard normal 𝒌 = 𝜇, 𝜎2, 𝛾, 𝜅 = (0, 1, 0, 0):

These are Hermite polynomials of 𝑧𝑞 — and form an orthogonal set of functions on 𝐿2[0,1]



Hermite basis effects on distributions

Effect of Legendre basis applied to standard normal distribution 



Results: application to tide 
gauges

• Daily sea level from 80 tide gauges from 1970-2018
• Divide into winter and summer seasons (DJF and JJA)
• Statistical significance via block bootstrapping



Changes in mean sea level
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Changes in sea level variance
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Changes in sea level skewness
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Changes in sea level kurtosis
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Example tide gauge with statistically 
significant changes in mean and variance 



Conclusions

1. Dominant change in sea level distributions is due to changes in the mean, consistent with 
previous studies

2. Some tide gauges show statistically significant changes in higher order moments as well, 
indicating that changing probability distributions can be important
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