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Sea level change and variability
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Predicting future sea level events

Requires understanding two components:

Pensacola sea level timeseries
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Research goals:

1. Quantify changes in probability distributions of
observed sea level

2. Interpret changes in distribution in terms of the
statistical moments



Methods: quantifying changes in
sea level distributions

Extending approach of McKinnon and Rhines 2016:
Quantile regression
Projection onto basis functions



Observed changes in
distributions

Quantile regression:

e Ordinary least squares regression
seeks to estimate the conditional
mean of a response variable Y to
a predictor X:

E[YIX] = Bo + p1X

e Quantile regression seeks to
estimate conditional quantiles Z(q)
of aresponse variable Y to a
predictor X:

Zyix(@) = Bo(@) + B (@)X

In-situ observed relative sea
level at La Jolla, CA [mm]
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Projection onto basis functions

Change in distribution under mean basis

Change in distribution under var basis
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Projection onto basis functions

Moment basis changes in guantiles
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Motivation for Legendre basis
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Moment basis functions are correlated:
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Moment basis changes in quantiles
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Legendre basis effects on distributions

Legendre basis changes in quantiles
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Cornish-Fisher Expansion

* Is there a relationship between the moments of a distribution and its quantiles? Yes:

r
« Cornish and Fisher (1937) show that the operator exp {%(—d—i) } increases the rth

cumulant of a distribution f(x), but leaves the distribution otherwise unchanged
 This allows us to estimate percentiles y, of a distribution given the cumulants:
Yp = U + ow;
S K S2
— 2 3 3
w=2z;+ (zq — 1)g+ (zq — SZq)ﬁ— (qu — SZq)£

where z, is the g-quantile of the standard normal distribution.

« Here S and K are parameters which approximate the skewness and kurtosis for small
deviations from Gaussianity.



Changes in percentiles from changes in moments
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Take derivatives and evaluate near standard normal k = (i, 52,y,x) = (0,1, 0, 0):
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These are Hermite polynomials of z, — and form an orthogonal set of functions on L?[0,1]
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Hermite basis effects on distributions

Hermite basis changes in quantiles
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Results: application to tide
gauges

Daily sea level from 80 tide gauges from 1970-2018
Divide into winter and summer seasons (DJF and JJA)
Statistical significance via block bootstrapping
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Changes in sea level
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60°N

Changes in sea level skewness
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Changes in sea level kurtosis
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JJA CHANGE IN VARIANCE

Example tide gauge with statistically
60°N significant changes in mean and variance
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Conclusions

1. Dominant change in sea level distributions is due to changes in the mean, consistent with

previous studies
2. Some tide gauges show statistically significant changes in higher order moments as well,

indicating that changing probability distributions can be important
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